文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Decoding pathology: the role of computational pathology in research and diagnostics.

作者信息

Hölscher David L, Bülow Roman D

机构信息

Department for Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.

Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.

出版信息

Pflugers Arch. 2025 Apr;477(4):555-570. doi: 10.1007/s00424-024-03002-2. Epub 2024 Aug 3.


DOI:10.1007/s00424-024-03002-2
PMID:39095655
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11958429/
Abstract

Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/191755bb225a/424_2024_3002_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/36573d1092fc/424_2024_3002_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/fc97611980e5/424_2024_3002_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/cbcb5fbb6f07/424_2024_3002_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/191755bb225a/424_2024_3002_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/36573d1092fc/424_2024_3002_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/fc97611980e5/424_2024_3002_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/cbcb5fbb6f07/424_2024_3002_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e3/11958429/191755bb225a/424_2024_3002_Fig4_HTML.jpg

相似文献

[1]
Decoding pathology: the role of computational pathology in research and diagnostics.

Pflugers Arch. 2025-4

[2]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

[3]
Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study.

Lancet Digit Health. 2024-1

[4]
Developing a low-cost, open-source, locally manufactured workstation and computational pipeline for automated histopathology evaluation using deep learning.

EBioMedicine. 2024-9

[5]
Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning.

Med Phys. 2023-11

[6]
Harnessing Deep Learning for Omics in an Era of COVID-19.

OMICS. 2023-4

[7]
Clinical Application of Digital and Computational Pathology in Renal Cell Carcinoma: A Systematic Review.

Eur Urol Oncol. 2024-6

[8]
Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology.

J Am Soc Nephrol. 2021-1

[9]
A systematic analysis of deep learning in genomics and histopathology for precision oncology.

BMC Med Genomics. 2024-2-5

[10]
Computational frameworks integrating deep learning and statistical models in mining multimodal omics data.

J Biomed Inform. 2024-4

引用本文的文献

[1]
Advances in the use of Radiomics and Pathomics for predicting the efficacy of neoadjuvant therapy in tumors.

Transl Oncol. 2025-8

[2]
Special issue European Journal of Physiology: Artificial intelligence in the field of physiology and medicine.

Pflugers Arch. 2025-4

本文引用的文献

[1]
Towards a general-purpose foundation model for computational pathology.

Nat Med. 2024-3

[2]
tRigon: an R package and Shiny App for integrative (path-)omics data analysis.

BMC Bioinformatics. 2024-3-5

[3]
Regression-based Deep-Learning predicts molecular biomarkers from pathology slides.

Nat Commun. 2024-2-10

[4]
Detection of PatIent-Level distances from single cell genomics and pathomics data with Optimal Transport (PILOT).

Mol Syst Biol. 2024-2

[5]
A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer.

Nat Med. 2024-1

[6]
Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study.

Lancet Digit Health. 2024-1

[7]
Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine.

Kidney360. 2023-12-1

[8]
Predicting early breast cancer recurrence from histopathological images in the Carolina Breast Cancer Study.

NPJ Breast Cancer. 2023-11-11

[9]
A large-scale retrospective study enabled deep-learning based pathological assessment of frozen procurement kidney biopsies to predict graft loss and guide organ utilization.

Kidney Int. 2024-2

[10]
Histopathologic brain age estimation via multiple instance learning.

Acta Neuropathol. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索