School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Trends Biochem Sci. 2019 Oct;44(10):827-836. doi: 10.1016/j.tibs.2019.04.012. Epub 2019 May 24.
The ability of mammalian cells to correctly identify and degrade misfolded secretory proteins, most of them bearing N-glycans, is crucial for their correct function and survival. An inefficient disposal mechanism results in the accumulation of misfolded proteins and consequent endoplasmic reticulum (ER) stress. N-glycan processing creates a code that reveals the folding status of each molecule, enabling continued folding attempts or targeting of the doomed glycoprotein for disposal. We review here the main steps involved in the accurate processing of unfolded glycoproteins. We highlight recent data suggesting that the processing is not stochastic, but that there is selective accelerated glycan trimming on misfolded glycoprotein molecules.
哺乳动物细胞正确识别和降解错误折叠分泌蛋白(大多数带有 N-聚糖)的能力对其正常功能和存活至关重要。如果处理机制效率低下,就会导致错误折叠蛋白的积累和随之而来的内质网(ER)应激。N-聚糖加工创造了一个密码,揭示了每个分子的折叠状态,使继续折叠尝试或靶向注定要被处理的糖蛋白成为可能。我们在这里回顾了准确处理未折叠糖蛋白所涉及的主要步骤。我们强调了最近的数据表明,这个过程不是随机的,而是在错误折叠的糖蛋白分子上选择性地加速聚糖修剪。