Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
Department of Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, 361000, People's Republic of China.
Abdom Radiol (NY). 2019 Oct;44(10):3441-3452. doi: 10.1007/s00261-019-02075-3.
To explore the preponderant diagnostic performances of IVIM and DKI in predicting the Gleason score (GS) of prostate cancer.
Diffusion-weighted imaging data were postprocessed using monoexponential, lVIM and DK models to quantitate the apparent diffusion coefficient (ADC), molecular diffusion coefficient (D), perfusion-related diffusion coefficient (Dstar), perfusion fraction (F), apparent diffusion for Gaussian distribution (Dapp), and apparent kurtosis coefficient (Kapp). Spearman's rank correlation coefficient was used to explore the relationship between those parameters and the GS, Kruskal-Wallis test, and Mann-Whitney U test were performed to compare the above parameters between the different groups, and a receiver-operating characteristic (ROC) curve was used to analyze the differential diagnosis ability. The interpretation of the results is in view of histopathologic tumor tissue composition.
The area under the ROC curves (AUCs) of ADC, F, D, Dapp, and Kapp in differentiating GS ≤ 3 + 4 and GS > 3 + 4 PCa were 0.744 (95% CI 0.581-0.868), 0.726 (95% CI 0.563-0.855), 0.732 (95% CI 0.569-0.860), and 0.752 (95% CI 0.590-0.875), 0.766 (95% CI 0.606-0.885), respectively, and those in differentiating GS ≤ 7 and GS > 7 PCa were 0.755 (95% CI 0.594-0.877), 0.734 (95% CI 0.571-0.861), 0.724 (95% CI0.560-0.853), and 0.716 (95% CI 0.552-0.847), 0.828 (95% CI 0.676-0.929), respectively. All the P values were less than 0.05. There was no significant difference in the AUC for the detection of different GS groups by using those parameters.
Both the IVIM and DKI models are beneficial to predict GS of PCa and indirectly predict its aggressiveness, and they have a comparable diagnostic performance with each other as well as ADC.
探讨 IVIM 和 DKI 模型在预测前列腺癌 Gleason 评分(GS)中的优势诊断性能。
使用单指数、IVIM 和 DKI 模型对扩散加权成像数据进行后处理,以定量评估表观扩散系数(ADC)、分子扩散系数(D)、灌注相关扩散系数(Dstar)、灌注分数(F)、高斯分布的表观扩散系数(Dapp)和表观峰度系数(Kapp)。采用 Spearman 秩相关系数分析各参数与 GS 的相关性,采用 Kruskal-Wallis 检验和 Mann-Whitney U 检验比较不同组别间各参数的差异,采用受试者工作特征(ROC)曲线分析各参数的鉴别诊断能力。结果的解释基于组织病理学肿瘤组织成分。
在鉴别 GS≤3+4 和 GS>3+4 PCa 方面,ADC、F、D、Dapp 和 Kapp 的 ROC 曲线下面积(AUC)分别为 0.744(95%CI 0.581-0.868)、0.726(95%CI 0.563-0.855)、0.732(95%CI 0.569-0.860)、0.752(95%CI 0.590-0.875)和 0.766(95%CI 0.606-0.885),在鉴别 GS≤7 和 GS>7 PCa 方面,ADC、F、D、Dapp 和 Kapp 的 AUC 分别为 0.755(95%CI 0.594-0.877)、0.734(95%CI 0.571-0.861)、0.724(95%CI0.560-0.853)和 0.716(95%CI 0.552-0.847)和 0.828(95%CI 0.676-0.929),所有 P 值均小于 0.05。利用这些参数检测不同 GS 组时,AUC 之间无显著差异。
IVIM 和 DKI 模型均有助于预测 PCa 的 GS,并间接预测其侵袭性,与 ADC 相比,它们具有相当的诊断性能。