Suppr超能文献

前列腺癌侵袭性预测:在 3.0T 扫描仪上,与 ADC 相比,体素内不相干运动(IVIM)成像和扩散峰度成像(DKI)在最终病理的格里森评分方面具有优越的诊断性能。

Prostate cancer aggressive prediction: preponderant diagnostic performances of intravoxel incoherent motion (IVIM) imaging and diffusion kurtosis imaging (DKI) beyond ADC at 3.0 T scanner with gleason score at final pathology.

机构信息

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

Department of Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, 361000, People's Republic of China.

出版信息

Abdom Radiol (NY). 2019 Oct;44(10):3441-3452. doi: 10.1007/s00261-019-02075-3.

Abstract

PURPOSE

To explore the preponderant diagnostic performances of IVIM and DKI in predicting the Gleason score (GS) of prostate cancer.

METHODS

Diffusion-weighted imaging data were postprocessed using monoexponential, lVIM and DK models to quantitate the apparent diffusion coefficient (ADC), molecular diffusion coefficient (D), perfusion-related diffusion coefficient (Dstar), perfusion fraction (F), apparent diffusion for Gaussian distribution (Dapp), and apparent kurtosis coefficient (Kapp). Spearman's rank correlation coefficient was used to explore the relationship between those parameters and the GS, Kruskal-Wallis test, and Mann-Whitney U test were performed to compare the above parameters between the different groups, and a receiver-operating characteristic (ROC) curve was used to analyze the differential diagnosis ability. The interpretation of the results is in view of histopathologic tumor tissue composition.

RESULTS

The area under the ROC curves (AUCs) of ADC, F, D, Dapp, and Kapp in differentiating GS ≤ 3 + 4 and GS > 3 + 4 PCa were 0.744 (95% CI 0.581-0.868), 0.726 (95% CI 0.563-0.855), 0.732 (95% CI 0.569-0.860), and 0.752 (95% CI 0.590-0.875), 0.766 (95% CI 0.606-0.885), respectively, and those in differentiating GS ≤ 7 and GS > 7 PCa were 0.755 (95% CI 0.594-0.877), 0.734 (95% CI 0.571-0.861), 0.724 (95% CI0.560-0.853), and 0.716 (95% CI 0.552-0.847), 0.828 (95% CI 0.676-0.929), respectively. All the P values were less than 0.05. There was no significant difference in the AUC for the detection of different GS groups by using those parameters.

CONCLUSION

Both the IVIM and DKI models are beneficial to predict GS of PCa and indirectly predict its aggressiveness, and they have a comparable diagnostic performance with each other as well as ADC.

摘要

目的

探讨 IVIM 和 DKI 模型在预测前列腺癌 Gleason 评分(GS)中的优势诊断性能。

方法

使用单指数、IVIM 和 DKI 模型对扩散加权成像数据进行后处理,以定量评估表观扩散系数(ADC)、分子扩散系数(D)、灌注相关扩散系数(Dstar)、灌注分数(F)、高斯分布的表观扩散系数(Dapp)和表观峰度系数(Kapp)。采用 Spearman 秩相关系数分析各参数与 GS 的相关性,采用 Kruskal-Wallis 检验和 Mann-Whitney U 检验比较不同组别间各参数的差异,采用受试者工作特征(ROC)曲线分析各参数的鉴别诊断能力。结果的解释基于组织病理学肿瘤组织成分。

结果

在鉴别 GS≤3+4 和 GS>3+4 PCa 方面,ADC、F、D、Dapp 和 Kapp 的 ROC 曲线下面积(AUC)分别为 0.744(95%CI 0.581-0.868)、0.726(95%CI 0.563-0.855)、0.732(95%CI 0.569-0.860)、0.752(95%CI 0.590-0.875)和 0.766(95%CI 0.606-0.885),在鉴别 GS≤7 和 GS>7 PCa 方面,ADC、F、D、Dapp 和 Kapp 的 AUC 分别为 0.755(95%CI 0.594-0.877)、0.734(95%CI 0.571-0.861)、0.724(95%CI0.560-0.853)和 0.716(95%CI 0.552-0.847)和 0.828(95%CI 0.676-0.929),所有 P 值均小于 0.05。利用这些参数检测不同 GS 组时,AUC 之间无显著差异。

结论

IVIM 和 DKI 模型均有助于预测 PCa 的 GS,并间接预测其侵袭性,与 ADC 相比,它们具有相当的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验