National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
J Am Soc Mass Spectrom. 2019 Aug;30(8):1491-1502. doi: 10.1007/s13361-019-02214-6. Epub 2019 May 30.
Nitrogen-centered and β-carbon-centered hydrogen-deficient peptide radicals are considered to be intermediates in the matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD)-induced C-C bond cleavage of peptide backbones when using an oxidizing matrix. To understand the general mechanism of C-C bond cleavage by MALDI-ISD, I study the fragmentation of model peptides and investigate the fragment formation pathways using calculations with density functional theory and transition state theory. The calculations indicate that the nitrogen-centered radical immediately undergoes C-C bond cleavage, leading to the formation of an a•/x fragment pair. In contrast, the dissociation of the β-carbon-centered radical is kinetically feasible under MALDI-ISD conditions, leading to the formation of an a/x• fragment pair. To discriminate these processes, I focus on the yield of d fragments, which originate from a• radicals through radical-induced side-chain loss, not from a fragments. The C-C bond cleavage on the C-terminal side of the carbamidomethylated cysteine residue is found to produce d fragments instead of a fragments. According to the calculation of the rate constant, the corresponding fragmentation occurs within 1 ns. The intense signal arising from d fragments and the lack of or weak signal from a fragments strongly suggest that the C-C bond cleavage occurs through a nitrogen-centered radical intermediate. In addition to the side-chain loss, the resulting a• radical undergoes hydrogen atom abstraction by the matrix. The results for a deuterium-labeled peptide indicate that the matrix abstracts a hydrogen atom from either the amide nitrogen or the β-carbon.
氮中心和β-碳中心氢缺失肽自由基被认为是在使用氧化基质的基质辅助激光解吸/电离源内碎裂(MALDI-ISD)诱导肽骨架 C-C 键断裂时的中间体。为了理解 MALDI-ISD 诱导的 C-C 键断裂的一般机制,我研究了模型肽的碎裂,并使用密度泛函理论和过渡态理论的计算研究了碎片形成途径。计算表明,氮中心自由基立即发生 C-C 键断裂,导致 a•/x 片段对的形成。相比之下,β-碳中心自由基的解离在 MALDI-ISD 条件下是动力学可行的,导致 a/x• 片段对的形成。为了区分这些过程,我专注于 d 片段的产率,d 片段源自 a• 自由基通过自由基诱导的侧链损失,而不是源自 a 片段。发现碳酰胺甲基化半胱氨酸残基的 C 末端的 C-C 键断裂会产生 d 片段而不是 a 片段。根据速率常数的计算,相应的碎裂在 1 ns 内发生。强烈的 d 片段信号和缺乏或弱的 a 片段信号强烈表明 C-C 键断裂是通过氮中心自由基中间体发生的。除了侧链损失之外,生成的 a•自由基还会被基质夺取氢原子。对氘标记肽的研究结果表明,基质从酰胺氮或β-碳上夺取氢原子。