Goerigk Lars, Hansen Andreas, Bauer Christoph, Ehrlich Stephan, Najibi Asim, Grimme Stefan
School of Chemistry, The University of Melbourne, Parkville, Australia.
Phys Chem Chem Phys. 2017 Dec 13;19(48):32184-32215. doi: 10.1039/c7cp04913g.
We present the GMTKN55 benchmark database for general main group thermochemistry, kinetics and noncovalent interactions. Compared to its popular predecessor GMTKN30 [Goerigk and Grimme J. Chem. Theory Comput., 2011, 7, 291], it allows assessment across a larger variety of chemical problems-with 13 new benchmark sets being presented for the first time-and it also provides reference values of significantly higher quality for most sets. GMTKN55 comprises 1505 relative energies based on 2462 single-point calculations and it is accessible to the user community via a dedicated website. Herein, we demonstrate the importance of better reference values, and we re-emphasise the need for London-dispersion corrections in density functional theory (DFT) treatments of thermochemical problems, including Minnesota methods. We assessed 217 variations of dispersion-corrected and -uncorrected density functional approximations, and carried out a detailed analysis of 83 of them to identify robust and reliable approaches. Double-hybrid functionals are the most reliable approaches for thermochemistry and noncovalent interactions, and they should be used whenever technically feasible. These are, in particular, DSD-BLYP-D3(BJ), DSD-PBEP86-D3(BJ), and B2GPPLYP-D3(BJ). The best hybrids are ωB97X-V, M052X-D3(0), and ωB97X-D3, but we also recommend PW6B95-D3(BJ) as the best conventional global hybrid. At the meta-generalised-gradient (meta-GGA) level, the SCAN-D3(BJ) method can be recommended. Other meta-GGAs are outperformed by the GGA functionals revPBE-D3(BJ), B97-D3(BJ), and OLYP-D3(BJ). We note that many popular methods, such as B3LYP, are not part of our recommendations. In fact, with our results we hope to inspire a change in the user community's perception of common DFT methods. We also encourage method developers to use GMTKN55 for cross-validation studies of new methodologies.
我们展示了用于一般主族热化学、动力学和非共价相互作用的GMTKN55基准数据库。与其广受欢迎的前身GMTKN30[戈里格克和格林姆,《化学理论计算杂志》,2011年,7卷,291页]相比,它允许对更多种类的化学问题进行评估——首次提出了13个新的基准集——并且还为大多数数据集提供了质量显著更高的参考值。GMTKN55包含基于2462个单点计算的1505个相对能量,用户社区可通过一个专门网站获取。在此,我们证明了更好的参考值的重要性,并再次强调在热化学问题的密度泛函理论(DFT)处理中,包括明尼苏达方法,需要进行伦敦色散校正。我们评估了217种色散校正和未校正的密度泛函近似变体,并对其中83种进行了详细分析,以确定稳健且可靠的方法。双杂化泛函是热化学和非共价相互作用最可靠的方法,只要技术上可行就应使用。特别是DSD - BLYP - D3(BJ)、DSD - PBEP86 - D3(BJ)和B2GPPLYP - D3(BJ)。最佳的杂化泛函是ωB97X - V、M052X - D3(0)和ωB97X - D3,但我们也推荐PW6B95 - D3(BJ)作为最佳的传统全局杂化泛函。在元广义梯度(meta - GGA)水平上,可以推荐SCAN - D3(BJ)方法。其他元广义梯度近似方法不如广义梯度近似泛函revPBE - D3(BJ)、B97 - D3(BJ)和OLYP - D3(BJ)。我们注意到许多流行的方法,如B3LYP,不在我们的推荐之列。事实上,我们希望通过我们的结果激发用户社区对常见DFT方法看法的改变。我们也鼓励方法开发者使用GMTKN55进行新方法的交叉验证研究。