Carmo Catarina, Araújo Margarida, Oliveira Raquel A
Chromosome Dynamics Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
Methods Mol Biol. 2019;2004:251-268. doi: 10.1007/978-1-4939-9520-2_19.
Structural maintenance of chromosomes (SMC) proteins are critical to maintain mitotic fidelity in all organisms. Over the last decades, acute inactivation of these complexes, together with the analysis of their dynamic binding to mitotic chromatin, has provided important insights on the molecular mechanism of these complexes as well as into the consequences of their failure at different stages of mitosis.Here, we describe a methodology to study both SMC function and dynamics using Drosophila melanogaster syncytial embryos. This system presents several advantages over canonical inactivation or imaging approaches. Efficient and fast inactivation of SMC complexes can be achieved by the use of tobacco etch virus (TEV) protease in vivo to cleave engineered versions of the SMC complexes. In contrast to genetically encoded TEV protease expression, Drosophila embryos enable prompt delivery of the protease by microinjection techniques, as detailed here, thereby allowing inactivation of the complexes within few minutes. Such an acute inactivation approach, when coupled with real-time imaging, allows for the analysis of the immediate consequences upon protein inactivation. As described here, this system also presents unique advantages to follow the kinetics of the loading of SMC complexes onto mitotic chromatin. We describe the use of Drosophila embryos to study localization and turnover of these molecules through live imaging and fluorescence recovery after photobleaching (FRAP) approaches.
染色体结构维持(SMC)蛋白对于所有生物体维持有丝分裂的保真度至关重要。在过去几十年中,这些复合物的急性失活,以及对它们与有丝分裂染色质动态结合的分析,为这些复合物的分子机制以及它们在有丝分裂不同阶段功能缺失的后果提供了重要见解。在此,我们描述一种利用黑腹果蝇合胞体胚胎研究SMC功能和动态变化的方法。该系统相对于传统的失活或成像方法具有多个优势。通过在体内使用烟草蚀纹病毒(TEV)蛋白酶切割工程化的SMC复合物版本,可实现SMC复合物高效快速的失活。与基因编码的TEV蛋白酶表达不同,果蝇胚胎能够通过本文详述的显微注射技术迅速递送蛋白酶,从而在几分钟内使复合物失活。这种急性失活方法与实时成像相结合,能够分析蛋白质失活后的即时后果。如本文所述,该系统在追踪SMC复合物加载到有丝分裂染色质上的动力学方面也具有独特优势。我们描述了利用果蝇胚胎通过实时成像和光漂白后荧光恢复(FRAP)方法研究这些分子的定位和周转。