Sorbonne Université, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), F-75012, Paris, France.
Real World Insight, IQVIA, F-92099, La Défense Cedex, France.
BMC Med Res Methodol. 2019 May 31;19(1):110. doi: 10.1186/s12874-019-0745-5.
This study compares an algorithm to detect acute gastroenteritis (AG) episodes from drug dispensing data to the validated data reported in a primary care surveillance system in France.
We used drug dispensing data collected in a drugstore database and data collected by primary care physicians involved in a French surveillance network, from season 2014/15 to 2016/17. We used an adapted version of an AG discrimination algorithm to identify AG episodes from the drugstore database. We used Pearson's correlation coefficient to evaluate the agreement between weekly AG signals obtained from the two data sources during winter months, in the overall population, by specific age-groups and by regions.
Correlations between AG signals for all ages were 0.84 [95%CI 0.69; 0.92] for season 2014/15, 0.87 [95%CI 0.75; 0.93] for season 2015/16 and 0.94 [95%CI 0.88; 0.97] for season 2016/17. The association between AG signals estimated from two data sources varied significantly across age groups in season 2016/17 (p-value < 0.01), and across regions in all three seasons studied (p-value < 0.01).
There is a strong agreement between the dynamic of AG activity estimated from drug dispensing data and from validated primary care surveillance data collected during winter months in the overall population but the agreement is poorer in several age groups and in several regions. Once automated, the reuse of drug dispensing data, already collected for reimbursement purposes, could be a cost-efficient method to monitor AG activity at the national level.
本研究比较了一种从药物配药数据中检测急性肠胃炎(AG)发作的算法与法国初级保健监测系统中已验证数据的报告。
我们使用了从药店数据库中收集的药物配药数据和参与法国监测网络的初级保健医生收集的数据,时间跨度为 2014/15 年至 2016/17 年。我们使用了一种经过改编的 AG 鉴别算法来从药店数据库中识别 AG 发作。我们使用 Pearson 相关系数评估了在冬季,在总体人群、特定年龄组和地区中,从两种数据源获得的每周 AG 信号之间的一致性。
在所有年龄段中,2014/15 年、2015/16 年和 2016/17 年的 AG 信号之间的相关性分别为 0.84[95%CI 0.69; 0.92]、0.87[95%CI 0.75; 0.93]和 0.94[95%CI 0.88; 0.97]。在 2016/17 年的三个季节中,从两种数据源估计的 AG 信号之间的关联在不同年龄组之间存在显著差异(p 值<0.01),在所有三个季节中,在不同地区之间也存在显著差异(p 值<0.01)。
从药物配药数据中估计的 AG 活动动态与冬季收集的经过验证的初级保健监测数据之间存在很强的一致性,但在几个年龄组和几个地区中,一致性较差。一旦实现自动化,重新利用已经为报销目的收集的药物配药数据可能是一种经济有效的方法,可用于在全国范围内监测 AG 活动。