Suppr超能文献

一种靶向蛋白质组学方法揭示了一种血清蛋白质特征作为可切除胃癌的诊断生物标志物。

A targeted proteomics approach reveals a serum protein signature as diagnostic biomarker for resectable gastric cancer.

机构信息

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.

Department of General Surgery and Surgical Oncology, University of Siena, Italy; Department of Surgical Oncology, Gdansk Medical University, Gdansk, Poland.

出版信息

EBioMedicine. 2019 Jun;44:322-333. doi: 10.1016/j.ebiom.2019.05.044. Epub 2019 May 28.

Abstract

BACKGROUND

Gastric cancer (GC) is the third leading cause of cancer death. Early detection is a key factor to reduce its mortality.

METHODS

We retrospectively collected pre- and postoperative serum samples as well as tumour tissues and adjacent normal tissues from 100 GC patients. Serum samples from non-cancerous patients were served as controls (n = 50). A high-throughput protein detection technology, multiplex proximity extension assays (PEA), was applied to measure levels of over 300 proteins. Alteration of each protein was analysed by univariate analysis. Elastic-net logistic regression was performed to select serum proteins into the diagnostic model.

FINDINGS

We identified 19 serum proteins (CEACAM5, CA9, MSLN, CCL20, SCF, TGF-alpha, MMP-1, MMP-10, IGF-1, CDCP1, PPIA, DDAH-1, HMOX-1, FLI1, IL-7, ZBTB-17, APBB1IP, KAZALD-1, and ADAMTS-15) that together distinguish GC cases from controls with a diagnostic sensitivity of 93%, specificity of 100%, and area under receiver operating characteristic curve (AUC) of 0·99 (95% CI: 0·98-1). Moreover, the 19-serum protein signature provided an increased diagnostic capacity in patients at TNM I-II stage (sensitivity 89%, specificity 100%, AUC 0·99) and in patients with high microsatellite instability (MSI) (91%, 98%, and 0·99) compared to individual proteins. These promising results will inspire a large-scale independent cohort study to be pursued for validating the proposed protein signature.

INTERPRETATION

Based on targeted proteomics and elastic-net logistic regression, we identified a 19-serum protein signature which could contribute to clinical GC diagnosis, especially for patients at early stage and those with high MSI. FUND: This study was supported by a European H2020-Marie Skłodowska-Curie Innovative Training Networks grant (316,929, GastricGlycoExplorer). Funder had no influence on trial design, data evaluation, and interpretation.

摘要

背景

胃癌(GC)是癌症死亡的第三大主要原因。早期发现是降低死亡率的关键因素。

方法

我们回顾性地收集了 100 名 GC 患者的术前和术后血清样本以及肿瘤组织和相邻正常组织。非癌症患者的血清样本作为对照(n=50)。我们应用高通量蛋白检测技术,多重邻近延伸分析(PEA)来测量 300 多种蛋白质的水平。通过单变量分析来分析每种蛋白质的变化。弹性网络逻辑回归用于将血清蛋白选入诊断模型。

发现

我们鉴定了 19 种血清蛋白(CEACAM5、CA9、MSLN、CCL20、SCF、TGF-α、MMP-1、MMP-10、IGF-1、CDCP1、PPIA、DDAH-1、HMOX-1、FLI1、IL-7、ZBTB-17、APBB1IP、KAZALD-1 和 ADAMTS-15),这些蛋白共同将 GC 病例与对照区分开来,诊断的灵敏度为 93%,特异性为 100%,受试者工作特征曲线(ROC)下面积(AUC)为 0.99(95%CI:0.98-1)。此外,与单个蛋白相比,19 种血清蛋白标志物在 TNM I-II 期患者(灵敏度 89%,特异性 100%,AUC 0.99)和高微卫星不稳定性(MSI)患者(91%,98%和 0.99)中提供了更高的诊断能力。这些有前景的结果将激励进行大规模的独立队列研究,以验证所提出的蛋白质标志物。

解释

基于靶向蛋白质组学和弹性网络逻辑回归,我们鉴定了一种 19 种血清蛋白标志物,可有助于临床 GC 诊断,特别是对早期患者和高 MSI 患者。

资助

这项研究得到了欧洲 H2020-Marie Skłodowska-Curie 创新培训网络资助(316,929,GastricGlycoExplorer)。资助者对试验设计、数据评估和解释没有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8d/6606959/1a45485ea2ba/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验