Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, China.
Liaocheng People's Hospital, Liaocheng, China.
Sci Rep. 2024 Oct 25;14(1):25309. doi: 10.1038/s41598-024-75912-1.
Cardia gastric cancer (CGC) is prevalent in East Asia, and noninvasive, cost-effective screening methods are needed. This study investigated the diagnostic value of serum pepsinogen (PG), gastrin-17 (G-17), Helicobacter pylori (H. pylori) antibodies, and proteomic profiling for CGC and precancerous lesions. We conducted a case-control study involving biopsy-confirmed patients with CGC (n = 60), low-grade intraepithelial neoplasia (CLGD, n = 60), high-grade intraepithelial neoplasia (CHGD, n = 64), and healthy controls (n = 120) matched for age and sex from high-incidence areas in China. Serological markers including PGI, PGII, G-17, and H. pylori were measured using ELISA and Western blot, while plasma protein markers were assessed using Olink® technology. The VSOLassoBag algorithm and nine machine learning (ML) algorithms were employed to identify crucial features and construct predictive models. Various evaluation metrics, including the area under the receiver-operating-characteristic curve (AUC), were utilized to compare predictive performance. Elevated PGII levels, decreased PGR, and H. pylori infection were significantly associated with an increased risk of CGC and precancerous lesions (P for trend < 0.05). The eXtreme Gradient Boosting (XGBoost) model performed best in discriminative ability among the 9 ML models. Following feature reduction based on predictive performance, a final explainable XGBoost model was developed, incorporating five protein biomarkers (CDHR2, ICAM4, PTPRM, CDC27, and FLT1). This model exhibited excellent performance in distinguishing individuals with CGC and precancerous lesions from healthy controls (AUC = 0.931 for CGC, 0.867 for CHGD, and 0.763 for CLGD), surpassing the traditional serological marker-based model. This study underscores the diagnostic potential of serological markers and proteomic profiling in the detection of CGC. Further validation and exploration of combined biomarker approaches are warranted to enhance early diagnosis and improve outcomes in high-risk populations.
胃贲门癌(CGC)在东亚地区较为普遍,因此需要一种非侵入性且具有成本效益的筛查方法。本研究旨在探讨血清胃蛋白酶原(PG)、胃泌素-17(G-17)、幽门螺杆菌(H. pylori)抗体以及蛋白质组学分析在 CGC 及癌前病变中的诊断价值。我们进行了一项病例对照研究,纳入了经活检证实的 CGC 患者(n=60)、低级别上皮内瘤变(CLGD,n=60)、高级别上皮内瘤变(CHGD,n=64)以及来自中国高发地区的年龄和性别相匹配的健康对照者(n=120)。采用酶联免疫吸附试验(ELISA)和 Western blot 法检测 PGI、PGII、G-17 和 H. pylori 等血清标志物,采用 Olink®技术检测血浆蛋白标志物。采用 VSOLassoBag 算法和 9 种机器学习(ML)算法识别关键特征并构建预测模型。利用受试者工作特征曲线(ROC)下面积(AUC)等多种评价指标比较预测性能。结果显示,PGII 水平升高、PGR 降低和 H. pylori 感染与 CGC 和癌前病变的风险增加显著相关(趋势 P<0.05)。在 9 种 ML 模型中,极端梯度提升(XGBoost)模型在判别能力方面表现最佳。基于预测性能进行特征降维后,建立了最终的可解释 XGBoost 模型,纳入了 5 个蛋白标志物(CDHR2、ICAM4、PTPRM、CDC27 和 FLT1)。该模型在区分 CGC 患者和癌前病变患者与健康对照者方面具有优异的性能(AUC 值分别为 0.931、0.867 和 0.763),优于传统基于血清标志物的模型。本研究强调了血清标志物和蛋白质组学分析在 CGC 检测中的诊断潜力。进一步验证和探索联合生物标志物方法有望提高高危人群的早期诊断水平并改善预后。