Suppr超能文献

将微生物组-药物相互作用研究引入临床。

Bringing microbiome-drug interaction research into the clinic.

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America.

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America.

出版信息

EBioMedicine. 2019 Jun;44:708-715. doi: 10.1016/j.ebiom.2019.05.009. Epub 2019 May 28.

Abstract

Our understanding of the scope and clinical relevance of gut microbiota metabolism of drugs is limited to relatively few biotransformations targeting a subset of therapeutics. Translating microbiome research into the clinic requires, in part, a mechanistic and predictive understanding of microbiome-drug interactions. This review provides an overview of microbiota chemistry that shapes drug efficacy and toxicity. We discuss experimental and computational approaches that attempt to bridge the gap between basic and clinical microbiome research. We highlight the current landscape of preclinical research focused on identifying microbiome-based biomarkers of patient drug response and we describe clinical trials investigating approaches to modulate the microbiome with the goal of improving drug efficacy and safety. We discuss approaches to aggregate clinical and experimental microbiome features into predictive models and review open questions and future directions toward utilizing the gut microbiome to improve drug safety and efficacy.

摘要

我们对肠道微生物群代谢药物的范围和临床相关性的理解仅限于相对较少的针对治疗药物子集的生物转化。将微生物组研究转化为临床实践,部分需要对微生物组-药物相互作用有机制和预测性的理解。这篇综述概述了影响药物疗效和毒性的微生物群化学。我们讨论了试图弥合基础和临床微生物组研究之间差距的实验和计算方法。我们重点介绍了目前专注于确定基于微生物组的患者药物反应生物标志物的临床前研究的现状,并描述了正在研究用调节微生物组的方法来提高药物疗效和安全性的临床试验。我们讨论了将临床和实验微生物组特征汇总到预测模型中的方法,并回顾了利用肠道微生物组提高药物安全性和疗效的开放性问题和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbf/6604038/a658d3f62211/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验