Suppr超能文献

不动杆菌属的稳定转化。

Stable Transformation of the Actinobacteria spp.

机构信息

University of New Hampshire, Durham, New Hampshire, USA.

University of New Hampshire, Durham, New Hampshire, USA

出版信息

Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00957-19. Print 2019 Aug 1.

Abstract

A stable and efficient plasmid transfer system was developed for nitrogen-fixing symbiotic actinobacteria of the genus , a key first step in developing a genetic system. Four derivatives of the broad-host-range cloning vector pBBR1MCS were successfully introduced into different strains by a filter mating with strain BW29427. Initially, plasmid pHKT1 that expresses green fluorescent protein (GFP) was introduced into strain CcI3 at a frequency of 4.0 × 10, resulting in transformants that were tetracycline resistant and exhibited GFP fluorescence. The presence of the plasmid was confirmed by molecular approaches, including visualization on agarose gel and PCR. Several other pBBR1MCS plasmids were also introduced into strain CcI3 and other strains at frequencies ranging from 10 to 10, and the presence of the plasmids was confirmed by PCR. The plasmids were stably maintained for over 2 years and through passage in a plant host. As a proof of concept, a salt tolerance candidate gene from the highly salt-tolerant sp. strain CcI6 was cloned into pBBR1MCS-3. The resulting construct was introduced into the salt-sensitive strain CcI3. Endpoint reverse transcriptase PCR (RT-PCR) showed that the gene was expressed in strain CcI3. The expression provided an increased level of salt tolerance for the transformant. These results represent stable plasmid transfer and exogenous gene expression in spp., overcoming a major hurdle in the field. This step in the development of genetic tools in spp. will open up new avenues for research on actinorhizal symbiosis. The absence of genetic tools for research has been a major hindrance to the associated field of actinorhizal symbiosis and the use of the nitrogen-fixing actinobacteria. This study reports on the introduction of plasmids into spp. and their functional expression of green fluorescent protein and a cloned gene. As the first step in developing genetic tools, this technique opens up the field to a wide array of approaches in an organism with great importance to and potential in the environment.

摘要

建立了一个稳定高效的质粒转移系统,用于固氮共生放线菌属的菌株,这是开发遗传系统的关键第一步。通过与 BW29427 菌株的滤膜交配,成功地将 broad-host-range 克隆载体 pBBR1MCS 的四个衍生物引入不同的菌株。最初,表达绿色荧光蛋白(GFP)的质粒 pHKT1 以 4.0×10的频率被引入到菌株 CcI3 中,导致转化体对四环素具有抗性并表现出 GFP 荧光。通过分子方法,包括琼脂糖凝胶可视化和 PCR,证实了质粒的存在。其他几个 pBBR1MCS 质粒也以 10 到 10的频率被引入到菌株 CcI3 和其他菌株中,并通过 PCR 证实了质粒的存在。质粒在植物宿主中稳定维持了超过 2 年,并通过传代。作为概念验证,从高度耐盐的盐单胞菌菌株 CcI6 中克隆了一个耐盐候选基因到 pBBR1MCS-3 中。构建的质粒被引入到盐敏感的菌株 CcI3 中。终点逆转录 PCR(RT-PCR)显示该基因在菌株 CcI3 中表达。表达为转化体提供了更高的耐盐水平。这些结果代表了在放线菌属中稳定的质粒转移和外源基因表达,克服了该领域的一个主要障碍。在放线菌属中遗传工具的开发这一步骤将为根瘤共生的研究开辟新的途径。缺乏遗传工具一直是根瘤共生相关领域和固氮放线菌应用的主要障碍。本研究报告了将质粒引入放线菌属及其对绿色荧光蛋白和克隆基因的功能表达。作为开发遗传工具的第一步,这项技术为该生物体的广泛研究方法打开了大门,该生物体对环境具有重要意义和潜力。

相似文献

1
Stable Transformation of the Actinobacteria spp.
Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00957-19. Print 2019 Aug 1.
3
Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.01737-18. Print 2018 Dec 1.
4
Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia.
FEMS Microbiol Lett. 2013 May;342(2):179-86. doi: 10.1111/1574-6968.12116. Epub 2013 Mar 28.
5
Transcriptomes of Frankia sp. strain CcI3 in growth transitions.
BMC Microbiol. 2011 Aug 25;11:192. doi: 10.1186/1471-2180-11-192.
6
Effect of salt stress on the physiology of Frankia sp strain CcI6.
J Biosci. 2013 Nov;38(4):699-702. doi: 10.1007/s12038-013-9371-2.
9
Metabolite pattern in root nodules of the actinorhizal plant Casuarina equisetifolia.
Phytochemistry. 2021 Jun;186:112724. doi: 10.1016/j.phytochem.2021.112724. Epub 2021 Mar 13.
10
Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis.
Appl Environ Microbiol. 2010 Apr;76(8):2451-60. doi: 10.1128/AEM.02667-09. Epub 2010 Feb 26.

引用本文的文献

1
Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases.
Environ Microbiol. 2025 Feb;27(2):e70050. doi: 10.1111/1462-2920.70050.
2
Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation.
Environ Microbiol Rep. 2024 Dec;16(6):e70033. doi: 10.1111/1758-2229.70033.
4
An overview of (Nod+/Fix+) and (Nod+/Fix-) interactions through genome mining and experimental modeling in co-culture and co-inoculation of .
Appl Environ Microbiol. 2024 May 21;90(5):e0028824. doi: 10.1128/aem.00288-24. Epub 2024 Apr 23.
5
New Insights into Boron Essentiality in Humans and Animals.
Int J Mol Sci. 2022 Aug 15;23(16):9147. doi: 10.3390/ijms23169147.
6
How Rhizobia Adapt to the Nodule Environment.
J Bacteriol. 2021 May 20;203(12):e0053920. doi: 10.1128/JB.00539-20. Epub 2021 Feb 1.
8
Characterization of Vesicle Differentiation Mutants of Frankia casuarinae.
Microbes Environ. 2020;35(2). doi: 10.1264/jsme2.ME19150.

本文引用的文献

1
The plant-growth-promoting actinobacteria of the genus Nocardia induces root nodule formation in Casuarina glauca.
Antonie Van Leeuwenhoek. 2019 Jan;112(1):75-90. doi: 10.1007/s10482-018-1147-0. Epub 2018 Sep 10.
2
Simple colony PCR procedure for the filamentous actinobacteria Frankia.
Antonie Van Leeuwenhoek. 2019 Jan;112(1):109-114. doi: 10.1007/s10482-018-1155-0. Epub 2018 Sep 5.
3
Nitrogen Fixation Mutants of the Actinobacterium Frankia Casuarinae CcI3.
Microbes Environ. 2017 Dec 27;32(4):344-351. doi: 10.1264/jsme2.ME17099. Epub 2017 Nov 18.
5
Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.
Appl Microbiol Biotechnol. 2014 Sep;98(18):8005-15. doi: 10.1007/s00253-014-5849-6. Epub 2014 Jun 6.
6
Isolation of mutants of the nitrogen-fixing actinomycete Frankia.
Microbes Environ. 2014;29(1):31-7. doi: 10.1264/jsme2.me13126. Epub 2013 Dec 28.
7
Use of Frankia and actinorhizal plants for degraded lands reclamation.
Biomed Res Int. 2013;2013:948258. doi: 10.1155/2013/948258. Epub 2013 Nov 11.
8
Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria.
PLoS One. 2011;6(11):e27846. doi: 10.1371/journal.pone.0027846. Epub 2011 Nov 16.
9
The biology of Frankia sp. strains in the post-genome era.
Mol Plant Microbe Interact. 2011 Nov;24(11):1310-6. doi: 10.1094/MPMI-06-11-0150.
10
Transient transformation of frankia by fusion marker genes in liquid culture.
Microbes Environ. 2009;24(3):231-40. doi: 10.1264/jsme2.me09115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验