Centre d'étude et de valorisation de la diversité microbienne, Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
PLoS One. 2011;6(11):e27846. doi: 10.1371/journal.pone.0027846. Epub 2011 Nov 16.
Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many other Actinobacteria.
水平基因转移通过允许一步获得新功能,极大地促进了细菌对环境条件变化和新生态位的殖民化的快速遗传适应。 conjugation 是由 conjugative plasmids 和整合 conjugative elements (ICEs) 介导的主要水平基因转移机制。虽然在大多数细菌 conjugative 系统中,DNA 易位需要组装复杂的 IV 型分泌系统 (T4SS),但在放线菌中,只需要单个 DNA FtsK/SpoIIIE 样易位蛋白。到目前为止,ICEs 在放线菌中的作用和多样性还没有得到太多关注。使用涉及 ICE 维持和转移的蛋白质的 HMM-profile 在 275 个放线菌基因组中搜索推定的 ICE。这些详尽的分析揭示了 144 个推定的 FtsK/SpoIIIE 型 ICE 和 17 个推定的 T4SS 型 ICE。基于维持和转移蛋白的系统发育分析对 ICE 进行分组,揭示了不同 ICE 亚家族之间的广泛交换。在弗兰克氏放线菌中发现了 17 个 ICE,弗兰克氏放线菌是全球重要的固氮微生物,它们与根瘤菌植物建立根瘤共生关系。对弗兰克氏放线菌 ICEs 的结构分析揭示了它们出乎意料的多样性和大量预测的适应性功能。体外和体内实验表明,弗兰克氏放线菌 ICEs 通过位点特异性重组从宿主染色体上切除,这表明它们是功能性的移动元件,无论弗兰克氏放线菌是作为土壤腐生菌还是植物内共生体生活。涉及 ICEs 维持和转移的蛋白质的系统发育分析表明,在放线菌目内,ICEs 携带货物的基因和染色体基因之间发生了活跃的交换。弗兰克氏放线菌 ICEs 在体外和体内的功能使我们可以预测,conjugation 和 ICEs 可以为这种具有挑战性的微生物和许多其他放线菌开发遗传操作工具。