Suppr超能文献

内部气候变率对气候变化影响干旱的贡献。

The contribution of internal climate variability to climate change impacts on droughts.

作者信息

Gu Lei, Chen Jie, Xu Chong-Yu, Kim Jong-Suk, Chen Hua, Xia Jun, Zhang Liping

机构信息

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China.

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China.

出版信息

Sci Total Environ. 2019 Sep 20;684:229-246. doi: 10.1016/j.scitotenv.2019.05.345. Epub 2019 May 24.

Abstract

The assessment of climate change impacts is usually done by calculating the change in drought conditions between future and historical periods by using multiple climate model simulations. However, this approach usually focuses on anthropogenic climate changes (ACCs) while ignoring the internal climate variability (ICV) caused by the chaotic nature of the climate system. Recent studies have shown that ICV plays an important role in the projected future climate change. To evaluate that role, this study quantifies the contribution of ICV to climate change impacts on regional droughts by using the signal-to-noise ratio (SNR) and the fraction of standard deviation (FOSD) as metrics for China. The internal climate variability or noise (i.e. ICV) is estimated as the inter-member variability of two climate models' large-member ensembles; the signal (i.e. ACC) and the climate model uncertainty (or inter-model uncertainty, IMU) are estimated as the ensemble mean and inter-model variability of 29 global climate models, respectively. The drought conditions are characterized by drought frequency, duration and severity, which are quantified by using the theory of run based on the standardized precipitation evapotranspiration index (SPEI). The results show that deteriorated drought conditions induced by ACCs are projected to occur over China. From the perspective of the SNR, the ICV impacts are less significant compared to the ACC impacts for drought metrics. Remarkable spatial variations of SNRs for future drought metrics are found, with values varying from 0.001 to exceeding 10. In terms of the FOSD, ICV contributions relative to the IMU are large, as FOSDs are >1 for around 22% grids. These results imply the significance of taking into account the impacts of ICV in drought assessment, any study ignores the influence of ICV may be biased.

摘要

气候变化影响的评估通常是通过使用多个气候模型模拟来计算未来与历史时期干旱状况的变化。然而,这种方法通常侧重于人为气候变化(ACC),而忽略了由气候系统的混沌性质引起的内部气候变率(ICV)。最近的研究表明,ICV在预测的未来气候变化中起着重要作用。为了评估这一作用,本研究使用信噪比(SNR)和标准差分数(FOSD)作为指标,对中国ICV对区域干旱气候变化影响的贡献进行了量化。内部气候变率或噪声(即ICV)被估计为两个气候模型大成员集合的成员间变率;信号(即ACC)和气候模型不确定性(或模型间不确定性,IMU)分别被估计为29个全球气候模型的集合均值和模型间变率。干旱状况通过干旱频率、持续时间和严重程度来表征,这些通过基于标准化降水蒸散指数(SPEI)的游程理论进行量化。结果表明,预计中国将出现由ACC导致的干旱状况恶化。从SNR的角度来看,与干旱指标的ACC影响相比,ICV影响不太显著。发现未来干旱指标的SNR存在显著的空间变化,其值从0.001到超过10不等。就FOSD而言,ICV相对于IMU的贡献较大,因为约22%的网格FOSD大于1。这些结果意味着在干旱评估中考虑ICV影响的重要性,任何忽略ICV影响的研究可能存在偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验