Lin Huifang, Tian Yuan, Chen Jiehua, Gu Sihong
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
Rev Sci Instrum. 2019 May;90(5):053111. doi: 10.1063/1.5086319.
We report on research into a microfabricated Rb vapor cell with differential detection. Elliptically polarized light is used to interact with alkali atoms to generate coherent population trapping (CPT) resonance, and the CPT signal is obtained by detecting the Faraday rotation effect with differential detection technology. To move closer to an actual chip-scale atomic clock (CSAC), we reduce the volume of the experimental apparatus and use a divergent laser beam to interact with the atoms. We obtain the short-term frequency stability of the CSAC based on the differential detection scheme and compare it with that of a conventional CSAC. The results show that the frequency stability is more than two times better than that of current commercial CSAC devices with the same power consumption and volume.
我们报告了一项关于采用差分检测的微纳制造铷蒸汽室的研究。椭圆偏振光用于与碱金属原子相互作用以产生相干布居囚禁(CPT)共振,并且通过利用差分检测技术检测法拉第旋转效应来获得CPT信号。为了更接近实际的芯片级原子钟(CSAC),我们减小了实验装置的体积,并使用发散激光束与原子相互作用。我们基于差分检测方案获得了CSAC的短期频率稳定性,并将其与传统CSAC的短期频率稳定性进行了比较。结果表明,在相同功耗和体积下,该频率稳定性比当前商用CSAC设备的频率稳定性好两倍以上。