Suppr超能文献

利用深度学习区分癌症后和健康人舌肌在言语时的协调模式。

Differentiating post-cancer from healthy tongue muscle coordination patterns during speech using deep learning.

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

J Acoust Soc Am. 2019 May;145(5):EL423. doi: 10.1121/1.5103191.

Abstract

The ability to differentiate post-cancer from healthy tongue muscle coordination patterns is necessary for the advancement of speech motor control theories and for the development of therapeutic and rehabilitative strategies. A deep learning approach is presented to classify two groups using muscle coordination patterns from magnetic resonance imaging (MRI). The proposed method uses tagged-MRI to track the tongue's internal tissue points and atlas-driven non-negative matrix factorization to reduce the dimensionality of the deformation fields. A convolutional neural network is applied to the classification task yielding an accuracy of 96.90%, offering the potential to the development of therapeutic or rehabilitative strategies in speech-related disorders.

摘要

区分癌症后与健康舌肌协调模式的能力对于推进言语运动控制理论的发展和治疗及康复策略的制定是必要的。本研究提出了一种基于深度学习的方法,利用磁共振成像(MRI)的肌肉协调模式对两组进行分类。该方法使用标记 MRI 来跟踪舌部内部组织点,并采用图谱驱动的非负矩阵分解来降低变形场的维度。应用卷积神经网络进行分类任务,准确率为 96.90%,为言语相关障碍的治疗或康复策略的制定提供了可能。

相似文献

2
Atlas-Based Tongue Muscle Correlation Analysis From Tagged and High-Resolution Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2019 Jul 15;62(7):2258-2269. doi: 10.1044/2019_JSLHR-S-18-0495. Epub 2019 Jul 2.
3
Analysis of Tongue Muscle Strain During Speech From Multimodal Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2023 Feb 13;66(2):513-526. doi: 10.1044/2022_JSLHR-22-00329. Epub 2023 Jan 30.
4
Determining functional units of tongue motion via graph-regularized sparse non-negative matrix factorization.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):146-53. doi: 10.1007/978-3-319-10470-6_19.
6
Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing.
J Acoust Soc Am. 2007 Jan;121(1):491-504. doi: 10.1121/1.2363926.
7
A Sparse Non-Negative Matrix Factorization Framework for Identifying Functional Units of Tongue Behavior From MRI.
IEEE Trans Med Imaging. 2019 Mar;38(3):730-740. doi: 10.1109/TMI.2018.2870939. Epub 2018 Sep 18.
8
Intermittently tagged real-time MRI reveals internal tongue motion during speech production.
Magn Reson Med. 2019 Aug;82(2):600-613. doi: 10.1002/mrm.27745. Epub 2019 Mar 28.
10
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images.
J Speech Lang Hear Res. 2016 Jun 1;59(3):468-79. doi: 10.1044/2016_JSLHR-S-14-0155.

引用本文的文献

1
Machine Learning in Dentistry: A Scoping Review.
J Clin Med. 2023 Jan 25;12(3):937. doi: 10.3390/jcm12030937.
2
Analysis of Tongue Muscle Strain During Speech From Multimodal Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2023 Feb 13;66(2):513-526. doi: 10.1044/2022_JSLHR-22-00329. Epub 2023 Jan 30.
3
Oral-Gut Microbiome Analysis in Patients With Metabolic-Associated Fatty Liver Disease Having Different Tongue Image Feature.
Front Cell Infect Microbiol. 2022 Jun 29;12:787143. doi: 10.3389/fcimb.2022.787143. eCollection 2022.
4
VoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI.
IEEE J Biomed Health Inform. 2022 Mar;26(3):1128-1139. doi: 10.1109/JBHI.2021.3097735. Epub 2022 Mar 7.
6
Automatic registration of 2D MR cine images for swallowing motion estimation.
PLoS One. 2020 Feb 11;15(2):e0228652. doi: 10.1371/journal.pone.0228652. eCollection 2020.

本文引用的文献

1
Speech Map: A Statistical Multimodal Atlas of 4D Tongue Motion During Speech from Tagged and Cine MR Images.
Comput Methods Biomech Biomed Eng Imaging Vis. 2019;7(4):361-373. doi: 10.1080/21681163.2017.1382393. Epub 2017 Oct 9.
2
A Sparse Non-Negative Matrix Factorization Framework for Identifying Functional Units of Tongue Behavior From MRI.
IEEE Trans Med Imaging. 2019 Mar;38(3):730-740. doi: 10.1109/TMI.2018.2870939. Epub 2018 Sep 18.
3
Phase Vector Incompressible Registration Algorithm for Motion Estimation From Tagged Magnetic Resonance Images.
IEEE Trans Med Imaging. 2017 Oct;36(10):2116-2128. doi: 10.1109/TMI.2017.2723021. Epub 2017 Jul 4.
4
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images.
J Speech Lang Hear Res. 2016 Jun 1;59(3):468-79. doi: 10.1044/2016_JSLHR-S-14-0155.
5
An Optimal Set of Flesh Points on Tongue and Lips for Speech-Movement Classification.
J Speech Lang Hear Res. 2016 Feb;59(1):15-26. doi: 10.1044/2015_JSLHR-S-14-0112.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
Tongue motion patterns in post-glossectomy and typical speakers: a principal components analysis.
J Speech Lang Hear Res. 2014 Jun 1;57(3):707-17. doi: 10.1044/1092-4388(2013/13-0085).
9
Reconstruction of high-resolution tongue volumes from MRI.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24. doi: 10.1109/TBME.2012.2218246. Epub 2012 Sep 27.
10
The geometric structure of the brain fiber pathways.
Science. 2012 Mar 30;335(6076):1628-34. doi: 10.1126/science.1215280.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验