Suppr超能文献

牙科领域的机器学习:一项范围综述。

Machine Learning in Dentistry: A Scoping Review.

作者信息

Arsiwala-Scheppach Lubaina T, Chaurasia Akhilanand, Müller Anne, Krois Joachim, Schwendicke Falk

机构信息

Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany.

ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland.

出版信息

J Clin Med. 2023 Jan 25;12(3):937. doi: 10.3390/jcm12030937.

Abstract

Machine learning (ML) is being increasingly employed in dental research and application. We aimed to systematically compile studies using ML in dentistry and assess their methodological quality, including the risk of bias and reporting standards. We evaluated studies employing ML in dentistry published from 1 January 2015 to 31 May 2021 on MEDLINE, IEEE Xplore, and arXiv. We assessed publication trends and the distribution of ML tasks (classification, object detection, semantic segmentation, instance segmentation, and generation) in different clinical fields. We appraised the risk of bias and adherence to reporting standards, using the QUADAS-2 and TRIPOD checklists, respectively. Out of 183 identified studies, 168 were included, focusing on various ML tasks and employing a broad range of ML models, input data, data sources, strategies to generate reference tests, and performance metrics. Classification tasks were most common. Forty-two different metrics were used to evaluate model performances, with accuracy, sensitivity, precision, and intersection-over-union being the most common. We observed considerable risk of bias and moderate adherence to reporting standards which hampers replication of results. A minimum (core) set of outcome and outcome metrics is necessary to facilitate comparisons across studies.

摘要

机器学习(ML)在牙科研究和应用中的使用越来越多。我们旨在系统地汇编牙科领域中使用机器学习的研究,并评估其方法学质量,包括偏倚风险和报告标准。我们评估了2015年1月1日至2021年5月31日期间在MEDLINE、IEEE Xplore和arXiv上发表的牙科领域使用机器学习的研究。我们评估了不同临床领域的发表趋势以及机器学习任务(分类、目标检测、语义分割、实例分割和生成)的分布情况。我们分别使用QUADAS-2和TRIPOD清单评估偏倚风险和对报告标准的遵守情况。在183项已识别的研究中,纳入了168项,这些研究聚焦于各种机器学习任务,并采用了广泛的机器学习模型、输入数据、数据源、生成参考测试的策略以及性能指标。分类任务最为常见。使用了42种不同的指标来评估模型性能,其中准确性、敏感性、精确性和交并比最为常见。我们观察到存在相当大的偏倚风险以及对报告标准的适度遵守情况,这妨碍了结果的复制。需要一套最小(核心)的结果和结果指标集,以促进不同研究之间的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f13/9918184/d2f3cbfb52bd/jcm-12-00937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验