Suppr超能文献

多波束合成孔径声纳的理论与实验研究

Theoretical and experimental study on multibeam synthetic aperture sonar.

作者信息

Wei Bo, Zhou Tian, Li Haisen, Xing Tianyao, Li Yixuan

机构信息

Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, People's Republic of China.

出版信息

J Acoust Soc Am. 2019 May;145(5):3177. doi: 10.1121/1.5109392.

Abstract

High-resolution imaging method is one of the researching focuses of underwater acoustic detection. Underwater small-target detection also requires detailed imaging technology. Multibeam echo sounders (MBESs) and synthetic aperture sonar (SAS) are the effective instruments widely researched to obtain underwater acoustic images. Constrained by the theory, the along-track resolution of MBES decreases with distance and the gaps problem of SAS always exists and both inevitably limit the quality of acoustic imaging. In this paper, a two dimensional multibeam synthetic aperture sonar (MBSAS) model is designed to overcome the shortcomings of conventional underwater imaging instruments. MBSAS can provide a three dimensional (3D) high-resolution acoustic image without a gap problem. An echo model and transducer array manifold are designed to meet the requirements of engineering applications. Imaging theory and target simulations prove the feasibility of the MBSAS model. The performance of the proposed model is demonstrated with a tank experiment. A detailed image is obtained through an experiment that can indicate the shapes of targets and has the ability to separate adjacent targets. The simulations and experimental results indicate that MBSAS can obtain a more detailed 3D full-scan image than conventional MBES and SAS system with a better energy focusing ability.

摘要

高分辨率成像方法是水声探测的研究热点之一。水下小目标探测也需要精细的成像技术。多波束回声测深仪(MBES)和合成孔径声纳(SAS)是广泛研究的用于获取水声图像的有效仪器。受理论限制,MBES的沿航迹分辨率随距离降低,且SAS的缝隙问题始终存在,两者都不可避免地限制了声学成像质量。本文设计了一种二维多波束合成孔径声纳(MBSAS)模型,以克服传统水下成像仪器的缺点。MBSAS可以提供无缝隙问题的三维(3D)高分辨率声学图像。设计了回波模型和换能器阵列流形以满足工程应用需求。成像理论和目标仿真证明了MBSAS模型的可行性。通过水槽实验验证了所提模型的性能。通过实验获得了一幅详细图像,该图像能够显示目标形状并具有分离相邻目标的能力。仿真和实验结果表明,与传统的MBES和SAS系统相比,MBSAS能够获得更详细的3D全扫描图像,且具有更好的能量聚焦能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验