Suppr超能文献

肌电图辅助建模对脑瘫儿童步态中肌肉肌腱力估计的影响。

The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy.

机构信息

Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Behavioral and Movement Sciences, Amsterdam Movement Sciences, the Netherlands; Gold Coast Centre for Orthopaedic Research, Engineering and Education (GCORE), Menzies Health Institute Queensland, Gold Coast, Australia.

Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Univ of Amsterdam, Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands.

出版信息

J Biomech. 2019 Jul 19;92:45-53. doi: 10.1016/j.jbiomech.2019.05.026. Epub 2019 May 22.

Abstract

Neuro-musculoskeletal modelling can provide insight into the aberrant muscle function during walking in those suffering cerebral palsy (CP). However, such modelling employs optimization to estimate muscle activation that may not account for disturbed motor control and muscle weakness in CP. This study evaluated different forms of neuro-musculoskeletal model personalization and optimization to estimate musculotendon forces during gait of nine children with CP (GMFCS I-II) and nine typically developing (TD) children. Data collection included 3D-kinematics, ground reaction forces, and electromyography (EMG) of eight lower limb muscles. Four different optimization methods estimated muscle activation and musculotendon forces of a scaled-generic musculoskeletal model for each child walking, i.e. (i) static optimization that minimized summed-excitation squared; (ii) static optimization with maximum isometric muscle forces scaled to body mass; (iii) an EMG-assisted approach using optimization to minimize summed-excitation squared while reducing tracking errors of experimental EMG-linear envelopes and joint moments; and (iv) EMG-assisted with musculotendon model parameters first personalized by calibration. Both static optimization approaches showed a relatively low model performance compared to EMG envelopes. EMG-assisted approaches performed much better, especially in CP, with only a minor mismatch in joint moments. Calibration did not affect model performance significantly, however it did affect musculotendon forces, especially in CP. A model more consistent with experimental measures is more likely to yield more physiologically representative results. Therefore, this study highlights the importance of calibrated EMG-assisted modelling when estimating musculotendon forces in TD children and even more so in children with CP.

摘要

神经肌肉骨骼建模可以深入了解脑瘫(CP)患者行走时异常的肌肉功能。然而,这种建模使用优化来估计肌肉激活,可能无法解释 CP 中的运动控制障碍和肌肉无力。本研究评估了不同形式的神经肌肉骨骼模型个性化和优化,以估计 9 名 CP 儿童(GMFCS I-II)和 9 名正常发育儿童(TD)行走时的肌肉肌腱力。数据采集包括 3D 运动学、地面反作用力和 8 个下肢肌肉的肌电图(EMG)。四种不同的优化方法估计了每个儿童行走时缩放通用肌肉骨骼模型的肌肉激活和肌肉肌腱力,即(i)最小化总和激发平方的静态优化;(ii)最大等长肌肉力与体重成比例缩放的静态优化;(iii)使用优化最小化总和激发平方同时减少实验 EMG 线性包络和关节力矩跟踪误差的 EMG 辅助方法;(iv)首先通过校准进行个性化的 EMG 辅助与肌肉肌腱模型参数。与 EMG 包络相比,两种静态优化方法的模型性能都相对较低。EMG 辅助方法表现更好,尤其是在 CP 中,关节力矩的不匹配很小。校准对模型性能没有显著影响,但确实会影响肌肉肌腱力,尤其是在 CP 中。与实验测量更一致的模型更有可能产生更具生理代表性的结果。因此,本研究强调了在估计 TD 儿童甚至 CP 儿童肌肉肌腱力时,使用校准的 EMG 辅助建模的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验