Ebers Megan R, Rosenberg Michael C, Kutz J Nathan, Steele Katherine M
Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA.
bioRxiv. 2023 Jan 21:2023.01.20.524757. doi: 10.1101/2023.01.20.524757.
We currently lack a theoretical framework capable of characterizing heterogeneous responses to exoskeleton interventions. Predicting an individual's response to an exoskeleton and understanding what data are needed to characterize responses has been a persistent challenge. In this study, we leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in nondisabled adults. Discrepancy modeling aims to resolve dynamical inconsistencies between model predictions and real-world measurements. Neural networks identified models of (i) gait, (ii) ( ) gait, and (iii) the ( , response) between them. If an (Nominal+Discrepancy) model captured exoskeleton responses, its predictions should account for comparable amounts of variance in gait data as the model. Discrepancy modeling successfully quantified individuals' exoskeleton responses without requiring knowledge about physiological structure or motor control: a model of gait augmented with a model of response accounted for significantly more variance in gait (median for kinematics (0.928 - 0.963) and electromyography (0.665 - 0.788), ( < 0.042)) than the model (median for kinematics (0.863 - 0.939) and electromyography (0.516 - 0.664)). However, additional measurement modalities and/or improved resolution are needed to characterize gait, as the discrepancy may not comprehensively capture response due to unexplained variance in gait (median for kinematics (0.954 - 0.977) and electromyography (0.724 - 0.815)). These techniques can be used to accelerate the discovery of individual-specific mechanisms driving exoskeleton responses, thus enabling personalized rehabilitation.
我们目前缺乏一个能够描述对外骨骼干预的异质性反应的理论框架。预测个体对外骨骼的反应并了解表征这些反应所需的数据一直是一项持续存在的挑战。在本研究中,我们利用基于神经网络的差异建模框架来量化非残疾成年人在被动踝关节外骨骼作用下步态的复杂变化。差异建模旨在解决模型预测与实际测量之间的动态不一致问题。神经网络识别出了(i)步态、(ii)( )步态以及(iii)它们之间的( ,反应)模型。如果一个(标称+差异)模型能够捕捉外骨骼反应,那么其预测应该能够解释与 模型相当的步态数据方差。差异建模成功地量化了个体的外骨骼反应,而无需了解生理结构或运动控制:一个添加了反应模型的步态模型在步态方面解释的方差显著更多(运动学的中位数 为(0.928 - 0.963),肌电图的中位数 为(0.665 - 0.788),( < 0.042)),高于 模型(运动学的中位数 为(0.863 - 0.939),肌电图的中位数 为(0.516 - 0.664))。然而,由于步态中存在无法解释的方差(运动学的中位数 为(0.954 - 0.977),肌电图的中位数 为(0.724 - 0.815)),差异可能无法全面捕捉反应,因此需要额外的测量方式和/或更高的分辨率来表征 步态。这些技术可用于加速发现驱动外骨骼反应的个体特异性机制,从而实现个性化康复。