Suppr超能文献

[3D打印在近距离放射治疗中的数字施源器]

[Digital applicator by 3D printing in contact brachytherapy].

作者信息

Lecornu M, Silva M, Barraux V, Stefan D, Kao W, Thariat J, Loiseau C

机构信息

Radiotherapy Department, centre de lutte contre le cancer François-Baclesse, 3, avenue du Général-Harris, 14000 Caen, France.

Radiotherapy Department, centre de lutte contre le cancer François-Baclesse, 3, avenue du Général-Harris, 14000 Caen, France.

出版信息

Cancer Radiother. 2019 Jul;23(4):328-333. doi: 10.1016/j.canrad.2019.03.008. Epub 2019 May 30.

Abstract

Brachytherapy of skin tumours uses custom applicators that are manufactured manually. The integration of 3D printing customization of applicators during hidh dose rate brachytherapy planning could allow a better skin conformation and a better reproducibility of the positioning and treatment. We present the technical implementation of this method for our first two patients. A provisional planning scanner was carried out to create a digital applicator. The creation of the digital applicator used successively several software programs. The first, commercial, was RhinocerosR 3D used via Grasshopper, an integrated open source plug-in. The 3D applicator was then exported to the commercial software Simplify3DR. A g-code format file was generated for the printer. A second scanner was made with a 3D applicator in place to plan the final treatment. The treatment was planned by reverse optimization. The applicator could be designed within 15 days. For patient A, it was noted that 95 % of the clinical target volume received at least 35.4Gy (63Gy EQD2). For patient B, 95 % of the clinical target volume received at least 36Gy (64.8Gy EQD2). The forecast and actual planimetry met the coverage criteria of D95. Contact brachytherapy with 3D bioimpression is feasible, after software training, for complex treatment lesions. This technique could be extended to other indications.

摘要

皮肤肿瘤的近距离放射治疗使用手工制造的定制施源器。在高剂量率近距离放射治疗计划期间,将施源器的3D打印定制集成进来,可以实现更好的皮肤贴合以及定位和治疗的更好再现性。我们展示了该方法在我们的前两名患者中的技术实施情况。进行了一次临时计划扫描以创建数字施源器。数字施源器的创建连续使用了几个软件程序。第一个是商业软件RhinocerosR 3D,通过集成的开源插件Grasshopper使用。然后将3D施源器导出到商业软件Simplify3DR。为打印机生成了g代码格式文件。放置3D施源器后进行了第二次扫描以规划最终治疗。通过逆向优化来规划治疗。施源器可以在15天内设计完成。对于患者A,注意到95%的临床靶体积接受了至少35.4Gy(63Gy EQD2)。对于患者B,95%的临床靶体积接受了至少36Gy(64.8Gy EQD2)。预测和实际平面测量符合D95的覆盖标准。经过软件培训后,对于复杂治疗病变,采用3D生物印记的接触式近距离放射治疗是可行的。该技术可扩展到其他适应症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验