Department of Electronic Engineering, Inha University, Incheon 402-751, South Korea.
Med Eng Phys. 2019 Jul;69:50-57. doi: 10.1016/j.medengphy.2019.05.006. Epub 2019 May 29.
This paper presents a gait sub-phase detection and prediction approach using surface electromyogram (sEMG) signals, pressure sensors, and the knee angle for a lower-limb power-assist robot. Pattern recognition and machine learning models using sEMG signals have several inherent problems for gait sub-phase detection. These problems are due to recognition delay, lack of consideration for the unique characteristics of sEMG signals based on the subject, and meaningless features. To solve these problems, we propose a new labeling technique based on the heel and toe, a muscle and feature selection, a user-adaptive classifier using a weighted voting technique to achieve gait sub-phase detection, and a gait sub-phase prediction technique using interpolation. Experimental results show that the average accuracies of the proposed labeling, the muscle and feature selection, and the user-adaptive classifier using weighted voting are 7%, 12%, and 17% better, respectively, than the existing methods using physical sensors. Results also show that the average prediction time of the proposed method is 80% faster than the existing methods.
本文提出了一种使用表面肌电图(sEMG)信号、压力传感器和膝关节角度的下肢助力机器人的步态子阶段检测和预测方法。使用 sEMG 信号的模式识别和机器学习模型在步态子阶段检测方面存在几个固有问题。这些问题是由于识别延迟、缺乏对基于主体的 sEMG 信号的独特特征的考虑以及无意义的特征造成的。为了解决这些问题,我们提出了一种基于脚跟和脚趾的新标记技术、肌肉和特征选择、使用加权投票技术的用户自适应分类器,以及使用插值的步态子阶段预测技术。实验结果表明,所提出的标记、肌肉和特征选择以及使用加权投票的用户自适应分类器的平均准确率分别比使用物理传感器的现有方法提高了 7%、12%和 17%。结果还表明,所提出方法的平均预测时间比现有方法快 80%。