Suppr超能文献

基于多传感器信息融合和机器学习的人体下肢跳跃运动阶段的有效识别。

Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.

机构信息

School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China.

出版信息

Med Biol Eng Comput. 2021 Apr;59(4):883-899. doi: 10.1007/s11517-021-02335-9. Epub 2021 Mar 21.

Abstract

Jump locomotion is the basic movement of human. However, no thorough research on the recognition of jump sub-phases has been carried so far. This paper aims to use multi-sensor information fusion and machine learning to recognize the human jump phase, which is crucial to the development of exoskeleton that assists jumping. The method of information fusion for sensors including sEMG, IMU, and footswitch sensor is studied. The footswitch signals are filtered by median filter. A processing method of synthesizing Euler angles into phase angle is proposed, which is beneficial to data integration. The jump locomotion is creatively segmented into five phases. The onset and offset of active segment are detected by sample entropy of sEMG and standard deviation of acceleration signal. The features are extracted from analysis windows using multi-sensor information fusion, and the dimension of feature matrix is selected. By comparing the performances of state-of-the-art machine learning classifiers, feature subsets of sEMG, IMU, and footswitch signals are selected from time domain features in a series of analysis window parameters. The average recognition accuracy of sEMG and IMU is 91.76% and 97.68%, respectively. When using the combination of sEMG, IMU, and footswitch signals, the average accuracy is 98.70%, which outperforms the combination of sEMG and IMU (97.97%, p < 0.01). Graphical Abstract The sub-phases of human locomotion are recognized based on multi-sensor information fusion and machine learning method. The feature data of the sub-phases is visualized in 3-dimensional space. The predicted states and the true states in a complete jump are compared along the time axis.

摘要

跳跃运动是人类的基本运动方式。然而,目前还没有对跳跃子阶段的识别进行彻底的研究。本文旨在使用多传感器信息融合和机器学习来识别人类跳跃阶段,这对于开发辅助跳跃的外骨骼至关重要。研究了包括表面肌电信号(sEMG)、惯性测量单元(IMU)和脚踏开关传感器在内的传感器的信息融合方法。使用中值滤波器对脚踏开关信号进行滤波。提出了一种将欧拉角合成相位角的处理方法,有利于数据集成。创造性地将跳跃运动分为五个阶段。通过 sEMG 样本熵和加速度信号标准差检测主动段的起始和结束。使用多传感器信息融合从分析窗中提取特征,并选择特征矩阵的维数。通过比较最先进的机器学习分类器的性能,从一系列分析窗参数的时域特征中选择 sEMG、IMU 和脚踏开关信号的特征子集。sEMG 和 IMU 的平均识别准确率分别为 91.76%和 97.68%。当使用 sEMG、IMU 和脚踏开关信号的组合时,平均准确率为 98.70%,优于 sEMG 和 IMU 的组合(97.97%,p<0.01)。

图摘要 基于多传感器信息融合和机器学习方法识别人类运动的子阶段。子阶段的特征数据以三维空间可视化。沿着时间轴比较完整跳跃中的预测状态和真实状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验