文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用加速度计进行车载呼吸频率估计

In-Vehicle Respiratory Rate Estimation Using Accelerometers.

作者信息

Wang Ju, Warnecke Joana M, Deserno Thomas M

机构信息

Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany.

出版信息

Stud Health Technol Inform. 2019;261:97-102.


DOI:
PMID:31156098
Abstract

The monitoring of vital signs in a dynamic environment is challenging. This work demonstrates an approach to estimate the respiratory rate (RR) under real-driving conditions by using two accelerometers for signal recording and de-noising. One accelerometer was attached to the seatbelt for recording respiratory movements; another one was attached to the left side of the car seat for recording noise. The frequency components of the noise were used to suppress the noise hidden in the signal. The performance of the proposed approach is evaluated for three testers under three driving conditions, i.e., engine on, flat road and uneven road. The estimated RRs for three testers are 11.54 ± 2.28 breaths per minute (bpm), 15.57 ± 5.77 bpm, and 9.63 ± 4.58 bpm. The median estimated RR for three testers are 12.08 bpm, 18.26 bpm, and 7.76 bpm, where the manually counted reference RRs are 12 bpm, 18 bpm, and 7 bpm respectively. The average difference between estimated RRs and reference RRs is 0.71 bpm for the condition engine on, 3.36 bpm for flat road, and 4.58 bpm for uneven road. The results exhibit the ability of the proposed approach to estimate RR under real-driving conditions.

摘要

在动态环境中监测生命体征具有挑战性。这项工作展示了一种通过使用两个加速度计进行信号记录和去噪来估计实际驾驶条件下呼吸频率(RR)的方法。一个加速度计附着在安全带上用于记录呼吸运动;另一个附着在汽车座椅左侧用于记录噪声。噪声的频率成分被用于抑制信号中隐藏的噪声。针对三名测试者在三种驾驶条件下,即发动机运转、平坦道路和不平坦道路,对所提出方法的性能进行了评估。三名测试者估计的呼吸频率分别为每分钟11.54±2.28次呼吸(bpm)、15.57±5.77 bpm和9.63±4.58 bpm。三名测试者估计呼吸频率的中位数分别为12.08 bpm、18.26 bpm和7.76 bpm,其中手动计数的参考呼吸频率分别为12 bpm、18 bpm和7 bpm。在发动机运转条件下,估计呼吸频率与参考呼吸频率的平均差值为0.71 bpm,在平坦道路上为3.36 bpm,在不平坦道路上为4.58 bpm。结果表明了所提出方法在实际驾驶条件下估计呼吸频率的能力。

相似文献

[1]
In-Vehicle Respiratory Rate Estimation Using Accelerometers.

Stud Health Technol Inform. 2019

[2]
Noise Reduction for Efficient In-Vehicle Respiration Monitoring with Accelerometers.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[3]
The Vehicle as a Diagnostic Space: Efficient Placement of Accelerometers for Respiration Monitoring During Driving.

Stud Health Technol Inform. 2019

[4]
Estimation of respiration rate and sleeping position using a wearable accelerometer.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[5]
Bayesian fusion of algorithms for the robust estimation of respiratory rate from the photoplethysmogram.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[6]
Non-Invasive Detection of Respiration and Heart Rate with a Vehicle Seat Sensor.

Sensors (Basel). 2018-5-8

[7]
Linshom thermodynamic sensor is a reliable alternative to capnography for monitoring respiratory rate.

J Clin Monit Comput. 2018-2

[8]
Tidal Volume and Instantaneous Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera.

IEEE J Biomed Health Inform. 2017-5

[9]
Ambulatory respiratory rate detection using ECG and a triaxial accelerometer.

Annu Int Conf IEEE Eng Med Biol Soc. 2013

[10]
Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer.

Physiol Meas. 2012-9-18

引用本文的文献

[1]
A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges.

Bioengineering (Basel). 2025-6-18

[2]
Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle.

Sensors (Basel). 2020-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索