Suppr超能文献

用于从光电容积脉搏波稳健估计呼吸率的算法的贝叶斯融合。

Bayesian fusion of algorithms for the robust estimation of respiratory rate from the photoplethysmogram.

作者信息

Zhu Tingting, Pimentel Marco A F, Clifford Gari D, Clifton David A

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6138-41. doi: 10.1109/EMBC.2015.7319793.

Abstract

Respiratory rate (RR) is a key vital sign that is monitored to assess the health of patients. With the increase of the availability of wearable devices, it is important that RR is extracted in a robust and noninvasive manner from the photoplethysmogram (PPG) acquired from pulse oximeters and similar devices. However, existing methods of noninvasive RR estimation suffer from a lack of robustness, resulting in the fact that they are not used in clinical practice. We propose a Bayesian approach to fusing the outputs of many RR estimation algorithms to improve the overall robustness of the resulting estimates. Our method estimates the accuracy of each algorithm and jointly infers the fused RR estimate in an unsupervised manner, with aim of producing a fused estimate that is more accurate than any of the algorithms taken individually. This approach is novel in the literature, where the latter has so far concentrated on attempting to produce single algorithms for RR estimation, without resulting in systems that have penetrated into clinical practice. A publicly-available dataset, Capnobase, was used to validate the performance of our proposed model. Our proposed methodology was compared to the best-performing individual algorithm from the literature, as well as to the results of using common fusing methodologies such as averaging, median, and maximum likelihood (ML). Our proposed methodology resulted in a mean-absolute-error (MAE) of 1.98 breaths per minute (bpm), outperformed other fusing strategies (mean fusion: 2.95 bpm; median fusion: 2.33 bpm; ML: 2.30 bpm). It also outperformed the best single algorithm (2.39 bpm) and the benchmark algorithm proposed for use with Capnobase (2.22 bpm). We conclude that the proposed fusion methodology can be used to combine RR estimates from multiple sources derived from the PPG, to infer a reliable and robust estimation of the respiratory rate in an unsupervised manner.

摘要

呼吸频率(RR)是用于评估患者健康状况的关键生命体征。随着可穿戴设备可用性的增加,以稳健且无创的方式从脉搏血氧仪及类似设备采集的光电容积脉搏波(PPG)中提取RR变得很重要。然而,现有的无创RR估计方法缺乏稳健性,导致它们未在临床实践中得到应用。我们提出一种贝叶斯方法,用于融合多种RR估计算法的输出,以提高所得估计值的整体稳健性。我们的方法估计每种算法的准确性,并以无监督的方式联合推断融合后的RR估计值,目的是生成比任何单个算法更准确的融合估计值。这种方法在文献中是新颖的,因为迄今为止文献主要集中在尝试生成用于RR估计的单一算法,而没有产生能够渗透到临床实践中的系统。使用一个公开可用的数据集Capnobase来验证我们提出的模型的性能。我们提出的方法与文献中表现最佳的单个算法以及使用诸如平均、中位数和最大似然(ML)等常见融合方法的结果进行了比较。我们提出的方法得出的平均绝对误差(MAE)为每分钟1.98次呼吸(bpm),优于其他融合策略(平均融合:2.95 bpm;中位数融合:2.33 bpm;ML:2.30 bpm)。它也优于最佳的单个算法(2.39 bpm)以及为与Capnobase一起使用而提出的基准算法(2.22 bpm)。我们得出结论,所提出的融合方法可用于组合从PPG衍生的多个来源的RR估计值,以无监督的方式推断出可靠且稳健的呼吸频率估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验