Suppr超能文献

RNA 下一代测序及生物信息学流程以在基因座特异性水平鉴定表达的 LINE-1

RNA Next-Generation Sequencing and a Bioinformatics Pipeline to Identify Expressed LINE-1s at the Locus-Specific Level.

作者信息

Kaul Tiffany, Morales Maria E, Smither Emily, Baddoo Melody, Belancio Victoria P, Deininger Prescott

机构信息

Tulane Cancer Center, Tulane University.

Tulane Cancer Center, Tulane University; Department of Pathology, Tulane University.

出版信息

J Vis Exp. 2019 May 19(147). doi: 10.3791/59771.

Abstract

Long INterspersed Elements-1 (LINEs/L1s) are repetitive elements that can copy and randomly insert in the genome resulting in genomic instability and mutagenesis. Understanding the expression patterns of L1 loci at the individual level will lend to the understanding of the biology of this mutagenic element. This autonomous element makes up a significant portion of the human genome with over 500,000 copies, though 99% are truncated and defective. However, their abundance and dominant number of defective copies make it challenging to identify authentically expressed L1s from L1-related sequences expressed as part of other genes. It is also challenging to identify which specific L1 locus is expressed due to the repetitive nature of the elements. Overcoming these challenges, we present an RNA-Seq bioinformatic approach to identify L1 expression at the locus specific level. In summary, we collect cytoplasmic RNA, select for polyadenylated transcripts, and utilize strand-specific RNA-Seq analyses to uniquely map reads to L1 loci in the human reference genome. We visually curate each L1 locus with uniquely mapped reads to confirm transcription from its own promoter and adjust mapped transcript reads to account for mappability of each individual L1 locus. This approach was applied to a prostate tumor cell line, DU145, to demonstrate the ability of this protocol to detect expression from a small number of the full-length L1 elements.

摘要

长散在核元件-1(LINEs/L1s)是可在基因组中复制并随机插入的重复元件,会导致基因组不稳定和诱变。了解L1基因座在个体水平的表达模式将有助于理解这种诱变元件的生物学特性。这种自主元件占人类基因组的很大一部分,有超过50万份拷贝,尽管99%是截短和有缺陷的。然而,它们的丰度以及大量有缺陷的拷贝使得从作为其他基因一部分而表达的L1相关序列中鉴定真正表达的L1具有挑战性。由于这些元件的重复性,鉴定哪个特定的L1基因座被表达也具有挑战性。为克服这些挑战,我们提出一种RNA测序生物信息学方法来鉴定基因座特异性水平的L1表达。总之,我们收集细胞质RNA,选择聚腺苷酸化转录本,并利用链特异性RNA测序分析将读数唯一地映射到人类参考基因组中的L1基因座。我们用唯一映射的读数直观地筛选每个L1基因座,以确认其自身启动子的转录,并调整映射的转录本读数以考虑每个L1基因座的可映射性。该方法应用于前列腺肿瘤细胞系DU145,以证明该方案检测少数全长L1元件表达的能力。

相似文献

2
A comprehensive approach to expression of L1 loci.
Nucleic Acids Res. 2017 Mar 17;45(5):e31. doi: 10.1093/nar/gkw1067.
3
Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans.
Nucleic Acids Res. 2017 May 19;45(9):5294-5308. doi: 10.1093/nar/gkx211.
6
Exon shuffling by L1 retrotransposition.
Science. 1999 Mar 5;283(5407):1530-4. doi: 10.1126/science.283.5407.1530.
8
Identifying related L1 retrotransposons by analyzing 3' transduced sequences.
Genome Biol. 2003;4(5):R30. doi: 10.1186/gb-2003-4-5-r30. Epub 2003 Apr 16.

引用本文的文献

1
Locus-specific LINE-1 expression in clinical ovarian cancer specimens at the single-cell level.
Sci Rep. 2024 Feb 21;14(1):4322. doi: 10.1038/s41598-024-54113-w.
2
A novel role of TRIM28 B box domain in L1 retrotransposition and ORF2p-mediated cDNA synthesis.
Nucleic Acids Res. 2023 May 22;51(9):4429-4450. doi: 10.1093/nar/gkad247.
5
Analysis of epigenetic features characteristic of L1 loci expressed in human cells.
Nucleic Acids Res. 2022 Feb 28;50(4):1888-1907. doi: 10.1093/nar/gkac013.
6
Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution.
Nucleic Acids Res. 2021 Jun 4;49(10):5813-5831. doi: 10.1093/nar/gkab369.
7
Deficiency Leads to Premature Ovarian Failure.
Front Cell Dev Biol. 2021 Mar 23;9:644135. doi: 10.3389/fcell.2021.644135. eCollection 2021.
8
Sequencing Analysis of mRNA Profile in Endothelial Cells in Response to ox-LDL.
Biochem Genet. 2021 Jun;59(3):767-780. doi: 10.1007/s10528-021-10028-z. Epub 2021 Feb 2.
9
Comparative analysis on the expression of L1 loci using various RNA-Seq preparations.
Mob DNA. 2020 Jan 6;11:2. doi: 10.1186/s13100-019-0194-z. eCollection 2020.

本文引用的文献

1
A comprehensive approach to expression of L1 loci.
Nucleic Acids Res. 2017 Mar 17;45(5):e31. doi: 10.1093/nar/gkw1067.
2
A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.
Genome Res. 2016 Jun;26(6):745-55. doi: 10.1101/gr.201814.115. Epub 2016 May 10.
3
Roles for retrotransposon insertions in human disease.
Mob DNA. 2016 May 6;7:9. doi: 10.1186/s13100-016-0065-9. eCollection 2016.
5
Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution.
Genome Res. 2015 Oct;25(10):1536-45. doi: 10.1101/gr.196238.115. Epub 2015 Aug 10.
6
TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets.
Bioinformatics. 2015 Nov 15;31(22):3593-9. doi: 10.1093/bioinformatics/btv422. Epub 2015 Jul 23.
7
Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci.
Nucleic Acids Res. 2014;42(16):10488-502. doi: 10.1093/nar/gku687. Epub 2014 Aug 20.
9
Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon.
Hum Mutat. 2012 Feb;33(2):369-71. doi: 10.1002/humu.21663. Epub 2011 Dec 8.
10
LINE-1 elements in structural variation and disease.
Annu Rev Genomics Hum Genet. 2011;12:187-215. doi: 10.1146/annurev-genom-082509-141802.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验