Rodon Fores Jennifer, Criado-Gonzalez Miryam, Schmutz Marc, Blanck Christian, Schaaf Pierre, Boulmedais Fouzia, Jierry Loïc
Université de Strasbourg , CNRS , Institut Charles Sadron (UPR22) , 23 rue du Loess , 67034 Strasbourg Cedex 2 , BP 84047 , France . Email:
Institut National de la Santé et de la Recherche Médicale , INSERM Unité 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France.
Chem Sci. 2019 Mar 11;10(18):4761-4766. doi: 10.1039/c9sc00312f. eCollection 2019 May 14.
Controlling how, when and where a self-assembly process occurs is essential for the design of the next generation of smart materials. Along this route, enzyme-assisted self-assembly is a powerful tool developed during the last decade. Here we introduce another strategy allowing for spatiotemporal control over peptide self-assemblies. We use a Fmoc-peptide precursor in dynamic equilibrium with its low molecular weight hydrogelator (LMWH) through a reversible disulfide bond. In the absence of proteins, no self-assembly of the hydrogelator is observed. In the presence of proteins, their interactions with the precursor initiate a self-assembly process of the hydrogelator around them. This self-assembly displaces the equilibrium between precursor and LMWH according to Le Chatelier's principle, producing new hydrogelators available to pursue the self-assembly growth. One thus establishes a self-sustaining cycle fuelled by the self-assembly itself until full consumption of the LMWH. For proteins in solutions this process can lead to a supramolecular hydrogel whereas for proteins deposited on a surface, the gel growth is initiated exclusively from the surface.
控制自组装过程的方式、时间和位置对于下一代智能材料的设计至关重要。沿着这条路线,酶辅助自组装是过去十年中开发的一种强大工具。在这里,我们介绍另一种策略,可实现对肽自组装的时空控制。我们使用一种Fmoc肽前体,它通过一个可逆的二硫键与其低分子量水凝胶剂(LMWH)处于动态平衡。在没有蛋白质的情况下,未观察到水凝胶剂的自组装。在有蛋白质的情况下,它们与前体的相互作用会引发水凝胶剂在其周围的自组装过程。根据勒夏特列原理,这种自组装会取代前体和LMWH之间的平衡,产生新的水凝胶剂以继续自组装生长。这样就建立了一个由自组装本身驱动的自我维持循环,直到LMWH完全消耗。对于溶液中的蛋白质,这个过程可以导致形成超分子水凝胶,而对于沉积在表面的蛋白质,凝胶生长仅从表面开始。