Jonas Mark, Cioce Brandon
Department of Biology, School of Natural and Social Sciences State University of New York-Purchase College Purchase New York.
Ecol Evol. 2019 May 8;9(10):5906-5915. doi: 10.1002/ece3.5173. eCollection 2019 May.
The impact of elevated carbon dioxide on plants is a growing concern in evolutionary ecology and global change biology. Characterizing patterns of phenotypic integration and multivariate plasticity to elevated carbon dioxide can provide insights into ecological and evolutionary dynamics in future human-altered environments. Here, we examined univariate and multivariate responses to carbon enrichment in six functional traits among six European accessions of . We detected phenotypic plasticity in both univariate and multivariate phenotypes, but did not find significant variation in plasticity (genotype by environment interactions) within or among accessions. Eigenvector, eigenvalue variance, and common principal components analyses showed that elevated carbon dioxide altered patterns of trait covariance, reduced the strength of phenotypic integration, and decreased population-level differentiation in the multivariate phenotype. Our data suggest that future carbon dioxide conditions may influence evolutionary dynamics in natural populations of .
二氧化碳浓度升高对植物的影响在进化生态学和全球变化生物学中日益受到关注。表征表型整合模式和对二氧化碳浓度升高的多变量可塑性,可为洞察未来人类改变的环境中的生态和进化动态提供线索。在此,我们研究了六个欧洲种源的六个功能性状对碳富集的单变量和多变量响应。我们在单变量和多变量表型中均检测到表型可塑性,但未在种源内或种源间发现可塑性(基因型与环境互作)的显著差异。特征向量、特征值方差和共同主成分分析表明,二氧化碳浓度升高改变了性状协方差模式,降低了表型整合强度,并减少了多变量表型中的种群水平分化。我们的数据表明,未来的二氧化碳条件可能会影响 的自然种群中的进化动态。