National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China.
Theor Appl Genet. 2019 Aug;132(8):2253-2272. doi: 10.1007/s00122-019-03352-x. Epub 2019 Jun 3.
We constructed a high-density genetic linkage map comprising 4,593 SLAF markers using specific-locus amplified fragment sequencing and identified six quantitative trait loci for pod dehiscence resistance in soybean. Pod dehiscence is necessary for propagation in wild soybean (Glycine soja). It is a major component causing yield losses in cultivated soybean, however, and thus, cultivated soybean varieties have been artificially selected for resistance to pod dehiscence. Detecting quantitative trait loci (QTLs) related to pod dehiscence is required for molecular marker-assisted selection for breeding new varieties with pod dehiscence resistance. In this study, we constructed a high-density genetic linkage map using 260 recombinant inbred lines derived from the cultivars of Heihe 43 (pod-indehiscent) (ZDD24325) and Heihe 18 (pod-dehiscent) (ZDD23620). The map contained 4953 SLAF markers spanning 1478.86 cM on 20 linkage groups with an average distance between adjacent markers of 0.53 cM. In total, six novel QTLs related to pod dehiscence were mapped using inclusive composite interval mapping, explaining 7.22-24.44% of the phenotypic variance across 3 years, including three stable QTLs (qPD01, qPD05-1 and qPD08-1), that had been validated by developing CAPS/dCAPS markers. Based on the SNP/Indel and significant differential expression analyses of two parents, seven genes were selected as candidate genes for future study. The high-density map, three stable QTLs and their molecular markers will be helpful for map-based cloning of pod dehiscence resistance genes and marker-assisted selection of pod dehiscence resistance in soybean breeding.
我们利用特异扩增片段测序技术构建了一个包含 4593 个 SLAF 标记的高密度遗传连锁图谱,并鉴定出大豆荚开裂抗性的 6 个数量性状位点。荚开裂对于野生大豆(Glycine soja)的繁殖是必要的。然而,它是造成栽培大豆产量损失的主要因素,因此,栽培大豆品种已经被人工选择具有荚开裂抗性。检测与荚开裂相关的数量性状位点(QTL)对于培育具有荚开裂抗性的新品种的分子标记辅助选择是必需的。在这项研究中,我们利用来自黑河 43(荚不开裂)(ZDD24325)和黑河 18(荚开裂)(ZDD23620)两个品种的 260 个重组自交系构建了一个高密度遗传连锁图谱。图谱包含了 4953 个 SLAF 标记,覆盖了 20 个连锁群的 1478.86 cM,相邻标记之间的平均距离为 0.53 cM。总共利用包含区间作图法鉴定到了 6 个与荚开裂相关的新 QTL,这些 QTL在 3 年内解释了 7.22-24.44%的表型变异,包括三个稳定的 QTL(qPD01、qPD05-1 和 qPD08-1),这些 QTL已经通过开发 CAPS/dCAPS 标记得到了验证。基于两个亲本的 SNP/Indel 和显著差异表达分析,选择了 7 个基因作为未来研究的候选基因。高密度图谱、三个稳定的 QTL 及其分子标记将有助于基于图谱的荚开裂抗性基因克隆和大豆荚开裂抗性的标记辅助选择。