Suppr超能文献

使用改进的深度学习网络对全切片图像中的细胞膜进行自动分割,以评估 HER2 状态。

Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network.

机构信息

Informatics Institute, Istanbul Technical University, Istanbul,Turkey.

Department of Electronics and Communication, Istanbul Technical University, Istanbul, Turkey.

出版信息

Comput Biol Med. 2019 Jul;110:164-174. doi: 10.1016/j.compbiomed.2019.05.020. Epub 2019 May 30.

Abstract

The uncontrollable growth of cells in the breast tissue causes breast cancer which is the second most common type of cancer affecting women in the United States. Normally, human epidermal growth factor receptor 2 (HER2) proteins are responsible for the division and growth of healthy breast cells. HER2 status is currently assessed using immunohistochemistry (IHC) as well as in situ hybridization (ISH) in equivocal cases. Manual HER2 evaluation of IHC stained microscopic images involves an error-prone, tedious, inter-observer variable, and time-consuming routine lab work due to diverse staining, overlapped regions, and non-homogeneous remarkable large slides. To address these issues, digital pathology offers reproducible, automatic, and objective analysis and interpretation of whole slide image (WSI). In this paper, we present a machine learning (ML) framework to segment, classify, and quantify IHC breast cancer images in an effective way. The proposed method consists of two major classifying and segmentation parts. Since HER2 is associated with tumors of an epithelial region and most of the breast tumors originate in epithelial tissue, it is crucial to develop an approach to segment different tissue structures. The proposed technique is comprised of three steps. In the first step, a superpixel-based support vector machine (SVM) feature learning classifier is proposed to classify epithelial and stromal regions from WSI. In the second stage, on classified epithelial regions, a convolutional neural network (CNN) based segmentation method is applied to segment membrane regions. Finally, divided tiles are merged and the overall score of each slide is evaluated. Experimental results for 127 slides are presented and compared with state-of-the-art handcraft and deep learning-based approaches. The experiments demonstrate that the proposed method achieved promising performance on IHC stained data. The presented automated algorithm was shown to outperform other approaches in terms of superpixel based classifying of epithelial regions and segmentation of membrane staining using CNN.

摘要

乳腺组织中细胞的不受控制生长会导致乳腺癌,这是美国女性第二常见的癌症类型。通常情况下,人表皮生长因子受体 2(HER2)蛋白负责健康乳腺细胞的分裂和生长。HER2 状态目前通过免疫组织化学(IHC)以及在可疑病例中进行原位杂交(ISH)来评估。由于染色多样化、重叠区域和非均匀显著大片,对 IHC 染色的显微镜图像进行手动 HER2 评估涉及易错、繁琐、观察者间变量和耗时的常规实验室工作。为了解决这些问题,数字病理学提供了可重复、自动和客观的全切片图像(WSI)分析和解释。在本文中,我们提出了一种机器学习(ML)框架,以有效地分割、分类和量化 IHC 乳腺癌图像。所提出的方法由两个主要的分类和分割部分组成。由于 HER2 与上皮区域的肿瘤有关,并且大多数乳腺癌起源于上皮组织,因此开发一种方法来分割不同的组织结构至关重要。所提出的技术由三个步骤组成。在第一步中,提出了一种基于超像素的支持向量机(SVM)特征学习分类器,用于从 WSI 中分类上皮和基质区域。在第二阶段,在分类的上皮区域上,应用基于卷积神经网络(CNN)的分割方法来分割膜区域。最后,分割的瓦片被合并,并且评估每个幻灯片的整体得分。呈现了 127 张幻灯片的实验结果,并与最先进的手工和基于深度学习的方法进行了比较。实验结果表明,所提出的方法在 IHC 染色数据上取得了有希望的性能。所提出的自动化算法在基于超像素的上皮区域分类和使用 CNN 进行膜染色分割方面表现优于其他方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验