Kozlovski Tal, Mitelpunkt Alexis, Thaler Avner, Gurevich Tanya, Orr-Urtreger Avi, Gana-Weisz Mali, Shachar Netta, Galili Tal, Marcus-Kalish Mira, Bressman Susan, Marder Karen, Giladi Nir, Benjamini Yoav, Mirelman Anat
Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.
Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Front Neurol. 2019 May 21;10:531. doi: 10.3389/fneur.2019.00531. eCollection 2019.
Mutations in the LRRK2 and GBA genes are the most common inherited causes of Parkinson's disease (PD). Studies exploring phenotypic differences based on genetic status used hypothesis-driven data-gathering and statistical-analyses focusing on specific symptoms, which may influence the validity of the results. We aimed to explore phenotypic expression in idiopathic PD (iPD) patients, G2019S-LRRK2-PD, and GBA-PD using a data-driven approach, allowing screening of large numbers of features while controlling selection bias. Data was collected from 1525 Ashkenazi Jews diagnosed with PD from the Tel-Aviv Medical center; 161 G2019S-LRRK2-PD, 222 GBA-PD, and 1142 iPD (no G2019S-LRRK2 or any of the 7 AJ GBA mutations tested). Data included 771 measures: demographics, cognitive, physical and neurological functions, performance-based measures, and non-motor symptoms. The association of the genotypes with each of the measures was tested while accounting for age at motor symptoms onset, gender, and disease duration; -values were reported and corrected in a hierarchical approach for an average over the selected measures false discovery rate control, resulting in 32 measures. GBA-PD presented with more severe symptoms expression while LRRK2-PD had more benign symptoms compared to iPD. GBA-PD presented greater cognitive and autonomic involvement, more frequent hyposmia and REM sleep behavior symptoms while these were less frequent among LRRK2-PD compared to iPD. Using a data-driven analytical approach strengthens earlier studies and extends them to portray a possible unique disease phenotype based on genotype among AJ PD. Such findings could help direct a more personalized therapeutic approach.
LRRK2和GBA基因的突变是帕金森病(PD)最常见的遗传病因。基于遗传状态探索表型差异的研究采用假设驱动的数据收集和聚焦特定症状的统计分析,这可能会影响结果的有效性。我们旨在使用数据驱动的方法探索特发性帕金森病(iPD)患者、G2019S-LRRK2-PD患者和GBA-PD患者的表型表达,以便在控制选择偏倚的同时筛选大量特征。数据收集自特拉维夫医疗中心诊断为帕金森病的1525名阿什肯纳兹犹太人;161名G2019S-LRRK2-PD患者、222名GBA-PD患者和1142名iPD患者(无G2019S-LRRK2突变或所检测的7种阿什肯纳兹犹太人GBA突变中的任何一种)。数据包括771项测量指标:人口统计学、认知、身体和神经功能、基于表现的测量指标以及非运动症状。在考虑运动症状发作时的年龄、性别和病程的情况下,测试了各基因型与每项测量指标的关联;报告了P值,并采用分层方法进行校正,以控制所选测量指标的平均错误发现率,最终得到32项测量指标。与iPD相比,GBA-PD表现出更严重的症状表达,而LRRK2-PD的症状则更为良性。GBA-PD表现出更大的认知和自主神经受累,嗅觉减退和快速眼动睡眠行为症状更频繁,而与iPD相比,这些症状在LRRK2-PD中较少见。使用数据驱动的分析方法强化了早期研究,并将其扩展以描绘基于阿什肯纳兹犹太人帕金森病基因型的可能独特疾病表型。这些发现有助于指导更个性化的治疗方法。