Micadei Kaonan, Peterson John P S, Souza Alexandre M, Sarthour Roberto S, Oliveira Ivan S, Landi Gabriel T, Batalhão Tiago B, Serra Roberto M, Lutz Eric
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580, Santo André, São Paulo, Brazil.
Institute for Theoretical Physics I, University of Stuttgart, D-70550, Stuttgart, Germany.
Nat Commun. 2019 Jun 5;10(1):2456. doi: 10.1038/s41467-019-10333-7.
Heat spontaneously flows from hot to cold in standard thermodynamics. However, the latter theory presupposes the absence of initial correlations between interacting systems. We here experimentally demonstrate the reversal of heat flow for two quantum correlated spins-1/2, initially prepared in local thermal states at different effective temperatures, employing a Nuclear Magnetic Resonance setup. We observe a spontaneous energy flow from the cold to the hot system. This process is enabled by a trade off between correlations and entropy that we quantify with information-theoretical quantities. These results highlight the subtle interplay of quantum mechanics, thermodynamics and information theory. They further provide a mechanism to control heat on the microscale.
在标准热力学中,热会自发地从高温流向低温。然而,后一种理论预先假定相互作用的系统之间不存在初始关联。在此,我们利用核磁共振装置,通过实验证明了两个最初处于不同有效温度的局部热态的量子相关自旋1/2的热流逆转。我们观察到能量从冷系统自发地流向热系统。这个过程是由关联和熵之间的权衡实现的,我们用信息理论量对其进行了量化。这些结果突出了量子力学、热力学和信息理论之间的微妙相互作用。它们还进一步提供了一种在微观尺度上控制热的机制。