Suppr超能文献

基于量子热力学力的不可逆功与麦克斯韦妖

Irreversible work and Maxwell demon in terms of quantum thermodynamic force.

作者信息

Ahmadi B, Salimi S, Khorashad A S

机构信息

Department of Physics, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran.

International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.

出版信息

Sci Rep. 2021 Jan 27;11(1):2301. doi: 10.1038/s41598-021-81737-z.

Abstract

The second law of classical equilibrium thermodynamics, based on the positivity of entropy production, asserts that any process occurs only in a direction that some information may be lost (flow out of the system) due to the irreversibility inside the system. However, any thermodynamic system can exhibit fluctuations in which negative entropy production may be observed. In particular, in stochastic quantum processes due to quantum correlations and also memory effects we may see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow of information into the system that leads to the negativity of the entropy production which is an apparent violation of the Second Law. In order to resolve this apparent violation, we will try to properly extend the Second Law to quantum processes by incorporating information explicitly into the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow of information. Finally, it is shown that negative and positive entropy production can be described by a quantum thermodynamic force.

摘要

经典平衡态热力学第二定律基于熵产生的正性,断言任何过程仅沿某个方向发生,即由于系统内部的不可逆性,一些信息可能会丢失(流出系统)。然而,任何热力学系统都可能表现出涨落,在其中可能观察到负熵产生。特别是,在由于量子关联以及记忆效应导致的随机量子过程中,我们可能会看到能量流的逆转(热量从低温系统流向高温系统)以及信息回流到系统中,这导致熵产生为负,这显然违反了第二定律。为了解决这一明显的违反情况,我们将尝试通过将信息明确纳入第二定律来适当地将第二定律扩展到量子过程。我们还将为信息的流动和回流提供热力学操作意义。最后,结果表明负熵产生和正熵产生可以由量子热力学力来描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f6b/7840741/97f83a25d39f/41598_2021_81737_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验