Suppr超能文献

反应能否遵循非传统的二阶鞍点路径而避开过渡态?

Can reactions follow non-traditional second-order saddle pathways avoiding transition states?

作者信息

Pradhan Renuka, Lourderaj Upakarasamy

机构信息

National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha, India.

出版信息

Phys Chem Chem Phys. 2019 Jun 28;21(24):12837-12842. doi: 10.1039/c9cp02431j. Epub 2019 Jun 5.

Abstract

We report here an ab initio (CASSCF/6-31+G*) trajectory simulation study on the mechanisms of the denitrogenation of 1-pyrazoline and its subsituted analogue that reveals reaction pathways via a high energy second-order saddle (SOS) region. This mechanism involves the molecule adopting a five-membered planar structure contrary to the traditional boat-like transition state. The SOS offers a trifurcation point where a pathway branches into three, different from the single pathway associated with a transitions state. We observe that the molecules following the SOS path exhibit distinctive dynamical features and form products with high translational energies and low rotational energies compared to those following the traditional pathways. In addition, the SOS pathway provides an alternative mechanism for the formation of stereo-selective products. Interestingly, although the reaction proceeds via a trimethylene diradical intermediate, the simulations show that the product cyclopropane is formed with a major single inversion of the configuration consistent with experimental observations. They also reveal mechanisms that do not follow the minimum energy paths and exhibit non-statistical dissociation dynamics.

摘要

我们在此报告一项关于1-吡唑啉及其取代类似物脱氮机制的从头算(CASSCF/6-31+G*)轨迹模拟研究,该研究揭示了经由高能二阶鞍点(SOS)区域的反应途径。此机制涉及分子采用五元平面结构,这与传统的船型过渡态相反。SOS提供了一个三岔点,在此处一条途径分支为三条,这与与过渡态相关的单一途径不同。我们观察到,与遵循传统途径的分子相比,沿着SOS路径的分子表现出独特的动力学特征,并形成具有高平动能和低转动能的产物。此外,SOS途径为立体选择性产物的形成提供了一种替代机制。有趣的是,尽管反应通过三亚甲基双自由基中间体进行,但模拟表明产物环丙烷的形成具有主要的单一构型反转,这与实验观察结果一致。它们还揭示了不遵循最小能量路径且表现出非统计解离动力学的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验