Ji Qixing, Grundle Damian S
GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's, GE01, Bermuda.
Rapid Commun Mass Spectrom. 2019 Oct 30;33(20):1553-1564. doi: 10.1002/rcm.8502.
Nitrous oxide (N O) is an atmospheric trace gas regulating Earth's climate, and is a key intermediate of many nitrogen cycling processes in aquatic ecosystems. Laser-based technology for N O concentration and isotopic/isotopomeric analyses has potential advantages, which include high analytical specificity, low sample size requirement and reduced cost.
An autosampler with a purge-and-trap module is coupled to a cavity ring-down spectrometer to achieve automated and high-throughput measurements of N O concentrations, N O isotope ratios (δ N and δ O values) and position-specific isotopomer ratios (δ N and δ N values). The system provides accuracy and precision similar to those for measurements made by traditional isotope ratio mass spectrometry (IRMS) techniques.
The sample sizes required were 0.01-1.1 nmol-N O. Measurements of four N O isotopic/isotopomeric references were cross-calibrated with those obtained by IRMS. With a sample size of 0.50 nmol-N O, the measurement precision (1σ) for δ N , δ N , δ N and δ O values was 0.61, 0.33, 0.41 and 0.43‰, respectively. Correction schemes were developed for sample size-dependent isotopic/isotopomeric deviations. The instrumental system demonstrated consistent measurements of dissolved N O concentrations, isotope/isotopomer ratios and production rates in seawater.
The coupling of an autosampler with a purge-and-trap module to a cavity ring-down spectrometer not only significantly reduces sample size requirements, but also offers comprehensive investigation of N O production pathways by the measurement of natural abundance and tracer level isotopes and isotopomers. Furthermore, the system can perform isotopic analyses of dissolved and solid nitrogen-containing samples using N O as the analytical proxy.
一氧化二氮(N₂O)是一种调节地球气候的大气微量气体,并且是水生生态系统中许多氮循环过程的关键中间体。基于激光的N₂O浓度及同位素/同位素异构体分析技术具有潜在优势,包括高分析特异性、低样品量要求和成本降低。
将带有吹扫捕集模块的自动进样器与光腔衰荡光谱仪联用,以实现对N₂O浓度、N₂O同位素比率(δ¹⁵N和δ¹⁸O值)以及位置特异性同位素异构体比率(δ¹⁵N和δ¹⁵N值)的自动化高通量测量。该系统提供的准确度和精密度与传统同位素比率质谱(IRMS)技术测量的结果相当。
所需样品量为0.01 - 1.1 nmol - N₂O。对四种N₂O同位素/同位素异构体参比物质的测量结果与通过IRMS获得的结果进行了交叉校准。当样品量为0.50 nmol - N₂O时,δ¹⁵N、δ¹⁵N、δ¹⁵N和δ¹⁸O值的测量精密度(1σ)分别为0.61、0.33、0.41和0.43‰。针对样品量依赖性同位素/同位素异构体偏差制定了校正方案。该仪器系统对海水中溶解的N₂O浓度、同位素/同位素异构体比率和产生速率进行了一致性测量。
将带有吹扫捕集模块的自动进样器与光腔衰荡光谱仪联用,不仅显著降低了样品量要求,还通过测量天然丰度以及示踪剂水平的同位素和同位素异构体,对N₂O产生途径进行了全面研究。此外,该系统可以使用N₂O作为分析替代物,对溶解态和固态含氮样品进行同位素分析。