Departamento de Ingeniería Química y Tecnología del medio ambiente, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain.
Institute of Sustainable Processes, Universidad de Valladolid, Valladolid, Spain.
Microb Cell Fact. 2019 Jun 7;18(1):104. doi: 10.1186/s12934-019-1154-5.
Methylocystis parvus is a type II methanotroph characterized by its high specific methane degradation rate (compared to other methanotrophs of the same family) and its ability to accumulate up to 50% of its biomass in the form of poly-3-hydroxybutyrate (PHB) under nitrogen limiting conditions. This makes it a very promising cell factory.
This article reports the first Genome Scale Metabolic Model of M. parvus OBBP. The model is compared to Genome Scale Metabolic Models of the closely related methanotrophs Methylocystis hirsuta and Methylocystis sp. SC2. Using the reconstructed model, it was possible to predict the biomass yield of M. parvus on methane. The prediction was consistent with the observed experimental yield, under the assumption of the so called "redox arm mechanism" for methane oxidation. The co-consumption of stored PHB and methane was also modeled, leading to accurate predictions of biomass yields and oxygen consumption rates and revealing an anaplerotic role of PHB degradation. Finally, the model revealed that anoxic PHB consumption has to be coupled to denitrification, as no fermentation of PHB is allowed by the reconstructed metabolic model.
The "redox arm" mechanism appears to be a general characteristic of type II methanotrophs, versus type I methanotrophs that use the "direct coupling" mechanism. The co-consumption of stored PHB and methane was predicted to play an anaplerotic role replenishing the serine cycle with glyoxylate and the TCA cycle with succinyl-CoA, which allows the withdrawal of metabolic precursors for biosynthesis. The stored PHB can be also used as an energy source under anoxic conditions when coupled to denitrification.
Methylocystis parvus 是一种 II 型甲烷氧化菌,其特点是比同一家族的其他甲烷氧化菌具有更高的甲烷特异性降解速率,并且在氮限制条件下能够将其生物量的 50%积累为聚-3-羟基丁酸(PHB)。这使其成为一种非常有前途的细胞工厂。
本文报道了 M. parvus OBBP 的第一个基因组规模代谢模型。该模型与密切相关的甲烷氧化菌 Methylocystis hirsuta 和 Methylocystis sp. SC2 的基因组规模代谢模型进行了比较。使用重建的模型,可以预测 M. parvus 对甲烷的生物量产量。在假设甲烷氧化的“氧化还原臂机制”的情况下,预测与观察到的实验产量一致。还对储存的 PHB 和甲烷的共消耗进行了建模,导致对生物量产量和耗氧量的准确预测,并揭示了 PHB 降解的补料作用。最后,该模型表明,缺氧 PHB 消耗必须与反硝化耦合,因为重建的代谢模型不允许 PHB 发酵。
“氧化还原臂”机制似乎是 II 型甲烷氧化菌的一般特征,而不是使用“直接耦合”机制的 I 型甲烷氧化菌。预测储存的 PHB 和甲烷的共消耗起到补料作用,用乙醛酸和琥珀酰辅酶 A 补充丝氨酸循环和 TCA 循环,从而允许从生物合成中提取代谢前体。当与反硝化耦合时,储存的 PHB 也可以用作缺氧条件下的能量来源。