Seattle Children's Research Institute (formerly Center for Infectious Disease Research), Seattle, Washington 98109, USA.
Department of Global Health, University of Washington, Seattle, Washington 98195, USA.
RNA. 2019 Sep;25(9):1150-1163. doi: 10.1261/rna.071258.119. Epub 2019 Jun 6.
Multiprotein editosomes catalyze gRNA-specified insertion and deletion of uridines to create functional mitochondrial mRNAs in Three functionally distinct editosomes are distinguished by their single KREN1, KREN2, or KREN3 RNase III endonuclease and, respectively, KREPB8, KREPB7, and KREPB6 partner proteins. These endonucleases perform the first catalytic step of editing, cleaving mRNA in diverse mRNA/gRNA heteroduplex substrates. We identified divergent and likely noncatalytic RNase III domains in KREPB4, KREPB5, KREPB6, KREPB7, KREPB8, KREPB9, and KREPB10 editosome proteins. Because known RNase III endonuclease functional domains are dimeric, the editing endonucleases may form heterodimers with one or more of these divergent RNase III proteins. We show here using conditional null cell lines that KREPB6, KREPB7, and KREPB8 are essential in both procyclic form (PF) and bloodstream (BF) cells. Loss of these proteins results in growth defects and loss of editing in vivo, as does mutation of their RNase III domain that is predicted to prevent dimerization. Loss of KREPB6, KREPB7, or KREPB8 also dramatically reduces cognate endonuclease abundance, as does the RNase III mutation, indicating that RNase III interactions with their partner proteins stabilize the endonucleases. The phenotypic consequences of repression are more severe in BF than in PF, indicating differences in endonuclease function between developmental stages that could impact regulation of editing. These results suggest that KREPB6, KREPB7, and KREPB8 form heterodimers with their respective endonucleases to perform mRNA cleavage. We also present a model wherein editosome proteins with divergent RNase III domains function in substrate selection via enzyme-pseudoenzyme interactions.
多蛋白编辑体催化 gRNA 特异性插入和缺失尿嘧啶,以在真核生物中创建功能性线粒体 mRNA。三种功能不同的编辑体通过其单一的 KREN1、KREN2 或 KREN3 RNA 内切酶和相应的 KREPB8、KREPB7 和 KREPB6 伙伴蛋白来区分。这些内切酶执行编辑的第一个催化步骤,在不同的 mRNA/gRNA 杂双链底物中切割 mRNA。我们在 KREPB4、KREPB5、KREPB6、KREPB7、KREPB8、KREPB9 和 KREPB10 编辑体蛋白中鉴定出了发散的、可能是非催化性的 RNA 内切酶 III 结构域。由于已知的 RNA 内切酶 III 功能结构域是二聚体,因此这些编辑内切酶可能与这些发散的 RNA 蛋白之一或多个形成异二聚体。我们在这里使用条件性 null 细胞系表明,KREPB6、KREPB7 和 KREPB8 在滋养体形式 (PF) 和血液体 (BF) 细胞中都是必需的。这些蛋白质的缺失导致体内生长缺陷和编辑缺失,其 RNA 内切酶 III 结构域的突变也会阻止二聚化,从而导致这种情况。KREPB6、KREPB7 或 KREPB8 的缺失也显著降低了同源内切酶的丰度,RNA 内切酶 III 突变也是如此,表明 RNA 内切酶与其伙伴蛋白的相互作用稳定了内切酶。在 BF 中,抑制的表型后果比在 PF 中更严重,这表明在发育阶段,内切酶的功能存在差异,可能会影响编辑的调控。这些结果表明,KREPB6、KREPB7 和 KREPB8 与各自的内切酶形成异二聚体,以执行 mRNA 切割。我们还提出了一个模型,其中具有发散 RNA 内切酶 III 结构域的编辑体蛋白通过酶-假酶相互作用在底物选择中发挥作用。