Suppr超能文献

梭菌遗传学:病原性梭菌的遗传操作。

Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia.

机构信息

School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK.

Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800.

出版信息

Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0040-2018.

Abstract

The past 10 years have been revolutionary for clostridial genetics. The rise of next-generation sequencing led to the availability of annotated whole-genome sequences of the important pathogenic clostridia: , () , and , but also () and . These sequences were a prerequisite for the development of functional, sophisticated genetic tools for the pathogenic clostridia. A breakthrough came in the early 2000s with the development of TargeTron-based technologies specific for the clostridia, such as ClosTron, an insertional gene inactivation tool. The following years saw a plethora of new technologies being developed, mostly for , but also for other members of the genus, including . A range of tools is now available, allowing researchers to precisely delete genes, change single nucleotides in the genome, complement deletions, integrate novel DNA into genomes, or overexpress genes. There are tools for forward genetics, including an inducible transposon mutagenesis system for . As the latest addition to the tool kit, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies have also been adopted for the construction of single and multiple gene deletions in . This article summarizes the key genetic technologies available to manipulate, study, and understand the pathogenic clostridia.

摘要

过去 10 年见证了梭菌遗传学的革命性发展。新一代测序技术的兴起使得重要病原性梭菌的注释全基因组序列得以问世,包括、、和,但也包括和。这些序列是为病原性梭菌开发功能性、复杂遗传工具的前提。21 世纪初,基于 TargeTron 的梭菌特异性技术(如 ClosTron,一种插入基因失活工具)的发展取得了突破。随后的几年里,大量新技术得以开发,这些技术主要针对,但也针对该属的其他成员,包括。现在有一系列工具可供使用,使研究人员能够精确地删除基因、改变基因组中的单个核苷酸、互补缺失、将新的 DNA 整合到基因组中或过表达基因。有用于正向遗传学的工具,包括用于的诱导转座子诱变系统。作为工具包的最新补充,成簇规律间隔短回文重复(CRISPR)-Cas9 技术也已被用于在构建单基因和多基因缺失。本文总结了用于操纵、研究和理解病原性梭菌的关键遗传技术。

相似文献

1
Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia.
Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0040-2018.
2
Genetic characteristics of toxigenic Clostridia and toxin gene evolution.
Toxicon. 2013 Dec 1;75:63-89. doi: 10.1016/j.toxicon.2013.05.003. Epub 2013 May 23.
3
Virulence Plasmids of the Pathogenic Clostridia.
Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0034-2018.
4
ClosTron-targeted mutagenesis.
Methods Mol Biol. 2010;646:165-82. doi: 10.1007/978-1-60327-365-7_11.
6
Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity.
Curr Opin Microbiol. 2005 Oct;8(5):601-5. doi: 10.1016/j.mib.2005.08.006.
8
Genome engineering of Clostridium difficile using the CRISPR-Cas9 system.
Clin Microbiol Infect. 2018 Oct;24(10):1095-1099. doi: 10.1016/j.cmi.2018.03.026. Epub 2018 Mar 29.
9
Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
Appl Environ Microbiol. 2016 Sep 30;82(20):6109-6119. doi: 10.1128/AEM.02128-16. Print 2016 Oct 15.
10
Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms.
Int J Med Microbiol. 2014 Nov;304(8):1147-59. doi: 10.1016/j.ijmm.2014.08.008. Epub 2014 Aug 18.

引用本文的文献

1
Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals.
Front Bioeng Biotechnol. 2024 Jul 11;12:1395540. doi: 10.3389/fbioe.2024.1395540. eCollection 2024.
4
Targeting the Impossible: A Review of New Strategies against Endospores.
Antibiotics (Basel). 2023 Jan 26;12(2):248. doi: 10.3390/antibiotics12020248.
5
Make It Less : Understanding Genetic Evolution and Global Spread of .
Genes (Basel). 2022 Nov 24;13(12):2200. doi: 10.3390/genes13122200.
6
Effects of Different Preparation Methods on Microbiota Composition of Fecal Suspension.
Mol Biotechnol. 2023 Jun;65(6):871-880. doi: 10.1007/s12033-022-00590-1. Epub 2022 Oct 31.
7
CRISPR-Cas9-Based Toolkit for Group II Spore and Sporulation Research.
Front Microbiol. 2021 Jan 27;12:617269. doi: 10.3389/fmicb.2021.617269. eCollection 2021.
8
Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24484-24493. doi: 10.1073/pnas.2009556117. Epub 2020 Sep 16.
9
Synthetic Biology Tools for Genome and Transcriptome Engineering of Solventogenic .
Front Bioeng Biotechnol. 2020 Apr 16;8:282. doi: 10.3389/fbioe.2020.00282. eCollection 2020.

本文引用的文献

1
Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile.
Mol Microbiol. 2018 Nov;110(4):533-549. doi: 10.1111/mmi.14107. Epub 2018 Oct 14.
5
Mechanisms of Action and Cell Death Associated with Toxins.
Toxins (Basel). 2018 May 22;10(5):212. doi: 10.3390/toxins10050212.
6
Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract.
PLoS Pathog. 2018 Apr 18;14(4):e1007004. doi: 10.1371/journal.ppat.1007004. eCollection 2018 Apr.
7
The Butanol Producing Microbe Clostridium beijerinckii NCIMB 14988 Manipulated Using Forward and Reverse Genetic Tools.
Biotechnol J. 2018 Nov;13(11):e1700711. doi: 10.1002/biot.201700711. Epub 2018 Apr 29.
8
Genome engineering of Clostridium difficile using the CRISPR-Cas9 system.
Clin Microbiol Infect. 2018 Oct;24(10):1095-1099. doi: 10.1016/j.cmi.2018.03.026. Epub 2018 Mar 29.
9
Recent Developments of the Synthetic Biology Toolkit for .
Front Microbiol. 2018 Feb 12;9:154. doi: 10.3389/fmicb.2018.00154. eCollection 2018.
10
Pathogenicity Locus Plasmid pCS1-1 Encodes a Novel Clostridial Conjugation Locus.
mBio. 2018 Jan 16;9(1):e01761-17. doi: 10.1128/mBio.01761-17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验