Department of Biomedicine, University of Bergen, Bergen, Norway.
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
PLoS One. 2019 Jun 7;14(6):e0216833. doi: 10.1371/journal.pone.0216833. eCollection 2019.
Schwann cells myelinate selected axons in the peripheral nervous system (PNS) and contribute to fast saltatory conduction via the formation of compact myelin, in which water is excluded from between tightly adhered lipid bilayers. Peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS), are incurable demyelinating conditions that result in pain, decrease in muscle mass, and functional impairment. Many Schwann cell proteins, which are directly involved in the stability of compact myelin or its development, are subject to mutations linked to these neuropathies. The most abundant PNS myelin protein is protein zero (P0); point mutations in this transmembrane protein cause CMT subtype 1B and DSS. P0 tethers apposing lipid bilayers together through its extracellular immunoglobulin-like domain. Additionally, P0 contains a cytoplasmic tail (P0ct), which is membrane-associated and contributes to the physical properties of the lipid membrane. Six CMT- and DSS-associated missense mutations have been reported in P0ct. We generated recombinant disease mutant variants of P0ct and characterized them using biophysical methods. Compared to wild-type P0ct, some mutants have negligible differences in function and folding, while others highlight functionally important amino acids within P0ct. For example, the D224Y variant of P0ct induced tight membrane multilayer stacking. Our results show a putative molecular basis for the hypermyelinating phenotype observed in patients with this particular mutation and provide overall information on the effects of disease-linked mutations in a flexible, membrane-binding protein segment. Using neutron reflectometry, we additionally show that P0ct embeds deep into a lipid bilayer, explaining the observed effects of P0ct on the physical properties of the membrane.
许旺细胞在外周神经系统(PNS)中髓鞘包裹特定的轴突,并通过形成紧密的髓鞘来促进快速跳跃传导,其中水被排除在紧密附着的脂质双层之间。周围神经病变,如 Charcot-Marie-Tooth 病(CMT)和 Dejerine-Sottas 综合征(DSS),是无法治愈的脱髓鞘疾病,导致疼痛、肌肉减少和功能障碍。许多直接参与致密髓鞘稳定性或其发育的许旺细胞蛋白,其突变与这些神经病变有关。最丰富的 PNS 髓鞘蛋白是零蛋白(P0);这种跨膜蛋白的点突变导致 CMT 亚型 1B 和 DSS。P0 通过其细胞外免疫球蛋白样结构域将相邻的脂质双层束缚在一起。此外,P0 含有一个细胞质尾巴(P0ct),它与膜相关,并有助于脂质膜的物理性质。已经在 P0ct 中报道了 6 种与 CMT 和 DSS 相关的错义突变。我们生成了 P0ct 的重组疾病突变变体,并使用生物物理方法对其进行了表征。与野生型 P0ct 相比,一些突变体在功能和折叠方面几乎没有差异,而另一些则突出了 P0ct 中功能重要的氨基酸。例如,P0ct 的 D224Y 变体诱导了紧密的膜多层堆叠。我们的结果为该特定突变患者中观察到的hypermyelinating 表型提供了一个潜在的分子基础,并为一个灵活的、膜结合蛋白片段中的疾病相关突变的影响提供了全面的信息。使用中子反射测量法,我们还表明 P0ct 深深地嵌入到脂质双层中,解释了 P0ct 对膜物理性质的观察到的影响。