Suppr超能文献

聚焦超声与脂质膜在分子水平上的相互作用机制。

Interaction mechanism between the focused ultrasound and lipid membrane at the molecular level.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.

Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

出版信息

J Chem Phys. 2019 Jun 7;150(21):215101. doi: 10.1063/1.5099008.

Abstract

Focused ultrasound (FUS) has a wide range of medical applications. Nowadays, the diagnostic and therapeutic ultrasound procedures are routinely used; effects of ultrasound on biological systems at the molecular level are, however, not fully understood. Experimental results on the interaction of the cell membrane, a simplest but important system component, with ultrasound are controversial. Molecular dynamics (MD) simulations could provide valuable insights, but there is no single study on the mechanism of the FUS induced structural changes in cell membranes. With this in mind, we develop a simple method to include FUS into a standard MD simulation. Adopting the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid membrane as a representative model described by the MARTINI coarse-grained force field, and using experimental values of the ultrasound frequency and intensity, we show that the heat and bubble cavitation are not the primary direct mechanisms that cause structural changes in the membrane. The spatial pressure gradients between the focused and free regions and between the parallel and perpendicular directions to the membrane are the origin of the mechanism. These gradients force lipids to move out of the focused region, forming a lipid flow along the membrane diagonal. Lipids in the free region move in the opposite direction due to the conservation of the total momentum. These opposite motions create wrinkles along the membrane diagonal at low FUS intensities and tear up the membrane at high FUS intensities. Once the membrane is torn up, it is not easy to reform. The implication of our findings in the FUS-induced drug delivery is discussed in some detail.

摘要

聚焦超声(FUS)在医学领域有广泛的应用。如今,诊断和治疗超声程序已常规应用;然而,人们对超声在分子水平上对生物系统的影响还不完全了解。关于细胞膜(最简单但重要的系统组成部分)与超声相互作用的实验结果存在争议。分子动力学(MD)模拟可以提供有价值的见解,但目前还没有关于 FUS 诱导细胞膜结构变化机制的单一研究。考虑到这一点,我们开发了一种简单的方法将 FUS 纳入标准 MD 模拟中。我们采用 1,2-二油酰基-sn-甘油-3-磷酸胆碱脂质膜作为代表模型,该模型由 MARTINI 粗粒度力场描述,并使用超声频率和强度的实验值,我们表明热和空化泡不是导致膜结构变化的主要直接机制。聚焦区和自由区之间以及平行和垂直于膜的方向之间的空间压力梯度是该机制的起源。这些梯度迫使脂质离开聚焦区,沿膜对角线形成脂质流。由于总动量的守恒,自由区中的脂质沿相反方向移动。这些相反的运动在低 FUS 强度下沿膜对角线产生皱纹,并在高 FUS 强度下撕裂膜。一旦膜被撕裂,就不容易再形成。我们的发现对 FUS 诱导药物输送的影响进行了详细讨论。

相似文献

7
Computer simulations of the phase separation in model membranes.模型膜中相分离的计算机模拟。
Faraday Discuss. 2013;161:63-75; discussion 113-50. doi: 10.1039/c2fd20117h.

本文引用的文献

5
Stress Propagation through Biological Lipid Bilayers in Silico.生物类脂双分子层中的应力传递的计算研究。
J Am Chem Soc. 2017 Oct 4;139(39):13588-13591. doi: 10.1021/jacs.7b04724. Epub 2017 Sep 25.
6
Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge.超声的机械效应和生物学效应:现有知识综述
Ultrasound Med Biol. 2017 Jun;43(6):1085-1104. doi: 10.1016/j.ultrasmedbio.2017.01.023. Epub 2017 Mar 23.
10
Membrane pore formation in atomistic and coarse-grained simulations.原子尺度和粗粒度模拟中的膜孔形成
Biochim Biophys Acta. 2016 Oct;1858(10):2266-2277. doi: 10.1016/j.bbamem.2015.12.031. Epub 2015 Dec 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验