Suppr超能文献

层状过渡金属氧化物中的镍/锂无序:电化学影响、起源及控制

Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control.

作者信息

Zheng Jiaxin, Ye Yaokun, Liu Tongchao, Xiao Yinguo, Wang Chongmin, Wang Feng, Pan Feng

机构信息

School of Advanced Materials, Shenzhen Graduate School , Peking University , Shenzhen 518055 , People's Republic of China.

Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States.

出版信息

Acc Chem Res. 2019 Aug 20;52(8):2201-2209. doi: 10.1021/acs.accounts.9b00033. Epub 2019 Jun 10.

Abstract

Lithium ion batteries (LIBs) not only power most of today's hybrid electric vehicles (HEV) and electric vehicles (EV) but also are considered as a promising system for grid-level storage. Large-scale applications for LIBs require substantial improvement in energy density, cost, and lifetime. Layered lithium transition metal (TM) oxides, in particular, Li(NiMnCo)O (NMC, + + = 1) are the most promising candidates as cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety. In order to further boost Li storage capacity, a great deal of attention has been directed toward developing Ni-rich layered TM oxides. However, structural disorder as a result of Ni/Li exchange in octahedral sites becomes a critical issue when Ni content increases to high values, as it leads to a detrimental effect on Li diffusivity, cycling stability, first-cycle efficiency, and overall electrode performance. Increasing effort has been dedicated to improving the electrochemical performance of layered TM oxides via reduction of cationic mixing. Therefore, it is important to summarize this research field and provide in-depth insight into the impact of Ni/Li disordering on electrochemical characteristics in layered TM oxides and its origin to accelerate the future development of layered TM oxides with high performance. In this Account, we start by introducing the Ni/Li disordering in LiNiO, the experimental characterization of Ni/Li disordering, and analyzing the impact of Ni/Li disordering on electrochemical characteristics of layered TM oxides. The antisite Ni in the Li layer can limit the rate performance by impeding the Li ion transport. It will also degrade the cycling stability by inducing anisotropic stress in the bulk structure. Nevertheless, the antisite Ni ions do not always bring drawbacks to the electrochemical performance; some studies including our works found that it can improve the thermal stability and the cycling structure stability of Ni-rich NMC materials. We next discuss the driving forces and the kinetic advantages accounting for the Ni/Li exchange and conclude that the steric effect of cation size and the magnetic interactions between TM cations are the two main driving forces to promote the Ni/Li exchange during synthesis and the electrochemical cycling, and the low energy barrier of Ni migration from the 3a site in the TM layer to the 3b site in the Li layer further provides a kinetic advantage. Based on this understanding, we then review the progress made to control the Ni/Li disordering through three main ways: (i) suppressing the driving force from the steric effect by ion exchange; (ii) tuning the magnetic interaction by cationic substitution; (iii) kinetically controlling Ni migration. Finally, our brief outlook on the future development of layered TM oxides with controlled Ni/Li disordering is provided. It is believed that this Account will provide significant understanding and inspirations toward developing high-performance layered TM oxide cathodes.

摘要

锂离子电池(LIBs)不仅为当今大多数混合动力电动汽车(HEV)和电动汽车(EV)提供动力,还被视为一种有前景的电网级储能系统。LIBs的大规模应用需要在能量密度、成本和寿命方面有实质性的改进。特别是层状锂过渡金属(TM)氧化物,尤其是Li(NiMnCo)O(NMC, + + = 1),作为阴极材料最具潜力,有望提高能量密度和延长寿命、降低成本并提高安全性。为了进一步提高锂存储容量,大量研究致力于开发富镍层状TM氧化物。然而,当镍含量增加到较高值时,八面体位置上镍/锂交换导致的结构无序成为一个关键问题,因为它会对锂扩散率、循环稳定性、首周效率和整体电极性能产生不利影响。人们越来越致力于通过减少阳离子混合来改善层状TM氧化物的电化学性能。因此,总结这一研究领域并深入了解镍/锂无序对层状TM氧化物电化学特性的影响及其起源,对于加速高性能层状TM氧化物的未来发展至关重要。在本综述中,我们首先介绍LiNiO中的镍/锂无序、镍/锂无序的实验表征,并分析镍/锂无序对层状TM氧化物电化学特性的影响。锂层中的反位镍会阻碍锂离子传输,从而限制倍率性能。它还会在整体结构中引起各向异性应力,从而降低循环稳定性。然而,反位镍离子并不总是给电化学性能带来负面影响;包括我们的工作在内的一些研究发现,它可以提高富镍NMC材料的热稳定性和循环结构稳定性。接下来,我们讨论导致镍/锂交换的驱动力和动力学优势,并得出结论:阳离子尺寸的空间效应和TM阳离子之间的磁相互作用是合成过程和电化学循环过程中促进镍/锂交换的两个主要驱动力,镍从TM层中的3a位置迁移到锂层中的3b位置的低能垒进一步提供了动力学优势。基于这一认识,我们随后回顾了通过三种主要方法来控制镍/锂无序所取得的进展:(i)通过离子交换抑制空间效应产生的驱动力;(ii)通过阳离子取代调节磁相互作用;(iii)从动力学上控制镍的迁移。最后,我们对具有可控镍/锂无序的层状TM氧化物的未来发展进行了简要展望。相信本综述将为开发高性能层状TM氧化物阴极提供重要的理解和启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验