Wang Yang-Yang, Song Xiang, Liu Sheng, Li Guo-Ran, Ye Shi-Hai, Gao Xue-Ping
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56233-56241. doi: 10.1021/acsami.1c17991. Epub 2021 Nov 17.
The merits of Ni-rich layered oxide cathodes in specific capacity and material cost accelerate their practical applications in electric vehicles and grid energy storage. However, detrimental structural deterioration occurs inevitably during long-term cycling, leading to potential instability and capacity decay of the cathodes. In this work, we investigate the effect of the doped cation radius on the electrochemical performance and structural stability of Ni-rich cathode materials by doping with Mg and Ca ions in LiNiCoMnO. The results reveal that an increase in the doping ion radius can enlarge the interlayer spacing but lead to the collapse of the layered structure if the ion radius is too large, which undermines the cycling stability of the cathode material. Compared with the Ca-doped sample and the pristine material, Mg-doped LiNiCoMnO presents improved structural stability and superior thermal stability due to the pillar and glue roles of medium-sized Mg ions in the lithium layer. The results of this study suggest that a suitable ionic radius of the dopant is critical for stabilizing the structure and improving the electrochemical properties of Ni-rich layered oxide cathode materials.
富镍层状氧化物阴极在比容量和材料成本方面的优势加速了它们在电动汽车和电网储能中的实际应用。然而,在长期循环过程中不可避免地会出现有害的结构劣化,导致阴极潜在的不稳定性和容量衰减。在这项工作中,我们通过在LiNiCoMnO中掺杂Mg和Ca离子,研究掺杂阳离子半径对富镍阴极材料电化学性能和结构稳定性的影响。结果表明,掺杂离子半径的增加可以扩大层间距,但如果离子半径过大则会导致层状结构坍塌,从而破坏阴极材料的循环稳定性。与Ca掺杂样品和原始材料相比,Mg掺杂的LiNiCoMnO由于中等尺寸的Mg离子在锂层中的支柱和粘合作用,呈现出改善的结构稳定性和优异的热稳定性。本研究结果表明,合适的掺杂剂离子半径对于稳定富镍层状氧化物阴极材料的结构和改善其电化学性能至关重要。