Suppr超能文献

致病性 MT-ATP6 m.8851T>C 突变阻止质子在 ATP 合酶膜结构域的 n 侧亲水区的运动。

The pathogenic MT-ATP6 m.8851T>C mutation prevents proton movements within the n-side hydrophilic cleft of the membrane domain of ATP synthase.

机构信息

Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.

Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France.

出版信息

Biochim Biophys Acta Bioenerg. 2019 Jul 1;1860(7):562-572. doi: 10.1016/j.bbabio.2019.06.002. Epub 2019 Jun 8.

Abstract

Dozens of pathogenic mutations have been localized in the mitochondrial gene (MT-ATP6) that encodes the subunit a of ATP synthase. The subunit a together with a ring of identical subunits c moves protons across the mitochondrial inner membrane coupled to rotation of the subunit c-ring and ATP synthesis. One of these mutations, m.8851T>C, has been associated with bilateral striatal lesions of childhood (BSLC), a group of rare neurological disorders characterized by symmetric degeneration of the corpus striatum. It converts a highly conserved tryptophan residue into arginine at position 109 of subunit a (aWR). We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aWR) severely impairs by an unknown mechanism the functioning of ATP synthase without any visible assembly/stability defect. Herein we show that ATP synthase function was recovered to varying degree by replacing the mutant arginine residue 126 with methionine, lysine or glycine or by replacing with methionine an arginine residue present at position 169 of subunit a (aR). In recently described atomic structures of yeast ATP synthase, aR is at the center of a hydrophilic cleft along which protons are transported from the subunit c-ring to the mitochondrial matrix, in the proximity of the two residues known from a long time to be essential to the activity of F (aR and cE). We provide evidence that the aWR change is responsible for electrostatic and steric hindrance that enables aR to engage in a salt bridge with cE. As a result, aR cannot interact properly with cE and ATP synthase fails to effectively move protons across the mitochondrial membrane. In addition to insight into the pathogenic mechanism induced by the m.8851T>C mutation, the present study brings interesting information about the role of specific residues of subunit a in the energy-transducing activity of ATP synthase.

摘要

数十种致病性突变已定位在编码 ATP 合酶亚单位 a 的线粒体基因 (MT-ATP6) 中。亚单位 a 与相同的亚单位 c 环一起移动质子穿过线粒体内膜,与亚单位 c 环的旋转和 ATP 合成偶联。这些突变之一,m.8851T>C,与儿童双侧纹状体病变(BSLC)有关,BSLC 是一组罕见的神经退行性疾病,其特征是纹状体的对称性退化。它将高度保守的色氨酸残基突变为亚单位 a 的 109 位精氨酸(aWR)。我们之前表明,酿酒酵母中的等效物(aWR)以未知机制严重损害 ATP 合酶的功能,而没有任何可见的组装/稳定性缺陷。在此,我们表明,通过用甲硫氨酸、赖氨酸或甘氨酸替换突变的精氨酸残基 126,或者通过用位于亚单位 a 的 169 位的精氨酸残基(aR)替换甲硫氨酸,ATP 合酶的功能在不同程度上得到恢复。在最近描述的酵母 ATP 合酶原子结构中,aR 位于亲水裂缝的中心,质子沿着该裂缝从亚单位 c 环运输到线粒体基质,在两个残基附近,从很久以前就知道这两个残基对 F 的活性至关重要(aR 和 cE)。我们提供的证据表明,aWR 变化是导致静电和空间位阻的原因,使 aR 能够与 cE 形成盐桥。结果,aR 不能与 cE 正确相互作用,ATP 合酶不能有效地将质子穿过线粒体膜移动。除了深入了解 m.8851T>C 突变引起的发病机制外,本研究还提供了有关亚单位 a 特定残基在 ATP 合酶能量转换活性中的作用的有趣信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验