Department of Neuroscience, Institut de Genomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34090 Montpellier, France.
Department of Microbiology, New York University Langone Medical Center, New York, NY 10016
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):13097-13106. doi: 10.1073/pnas.1903203116. Epub 2019 Jun 10.
Stress can either promote or impair learning and memory. Such opposing effects depend on whether synapses persist or decay after learning. Maintenance of new synapses formed at the time of learning upon neuronal network activation depends on the stress hormone-activated glucocorticoid receptor (GR) and neurotrophic factor release. Whether and how concurrent GR and neurotrophin signaling integrate to modulate synaptic plasticity and learning is not fully understood. Here, we show that deletion of the neurotrophin brain-derived neurotrophic factor (BDNF)-dependent GR-phosphorylation (PO) sites impairs long-term memory retention and maintenance of newly formed postsynaptic dendritic spines in the mouse cortex after motor skills training. Chronic stress and the BDNF polymorphism Val66Met disrupt the BDNF-dependent GR-PO pathway necessary for preserving training-induced spines and previously acquired memories. Conversely, enrichment living promotes spine formation but fails to salvage training-related spines in mice lacking BDNF-dependent GR-PO sites, suggesting it is essential for spine consolidation and memory retention. Mechanistically, spine maturation and persistence in the motor cortex depend on synaptic mobilization of the glutamate receptor subunit A1 (GluA1) mediated by GR-PO Together, these findings indicate that regulation of GR-PO via activity-dependent BDNF signaling is important for the formation and maintenance of learning-dependent synapses. They also define a signaling mechanism underlying these effects.
压力既可以促进也可以损害学习和记忆。这种相反的效果取决于学习后突触是持续存在还是衰退。新形成的突触在神经元网络激活时的学习过程中依赖于应激激素激活的糖皮质激素受体 (GR) 和神经营养因子的释放而得以维持。同时存在的 GR 和神经营养因子信号如何整合来调节突触可塑性和学习尚不完全清楚。在这里,我们表明,删除神经营养因子脑源性神经营养因子 (BDNF) 依赖性 GR 磷酸化 (PO) 位点会损害运动技能训练后小鼠大脑皮层中新形成的突触后树突棘的长期记忆保留和维持。慢性应激和 BDNF 多态性 Val66Met 会破坏 BDNF 依赖性 GR-PO 途径,而该途径对于维持训练诱导的棘突和以前获得的记忆是必需的。相反,丰富的生活促进了棘突的形成,但在缺乏 BDNF 依赖性 GR-PO 位点的小鼠中无法挽救与训练相关的棘突,表明其对于棘突的巩固和记忆的保留是必需的。从机制上讲,运动皮层中棘突的成熟和维持依赖于 GR-PO 介导的谷氨酸受体亚基 A1 (GluA1) 的突触易化。总之,这些发现表明,通过 BDNF 信号转导对 GR-PO 的调节对于学习相关突触的形成和维持是重要的。它们还定义了这些影响的信号机制。