Suppr超能文献

基于偏相关的部分线性模型变量选择

Variable selection for partially linear models via partial correlation.

作者信息

Liu Jingyuan, Lou Lejia, Li Runze

机构信息

Department of Statistics in School of Economics, Wang Yanan Institute for Studies in Economics and Fujian Key Laboratory of Statistical Science, Xiamen University, Xiamen, Fujian, 361005, China.

Ernst & Young, 5 Times Square, New York, NY 10036 USA.

出版信息

J Multivar Anal. 2018 Sep;167:18-434. doi: 10.1016/j.jmva.2018.06.005. Epub 2018 Jun 20.

Abstract

The partially linear model (PLM) is a useful semiparametric extension of the linear model that has been well studied in the statistical literature. This paper proposes a variable selection procedure for the PLM with ultrahigh dimensional predictors. The proposed method is different from the existing penalized least squares procedure in that it relies on partial correlation between the partial residuals of the response and the predictors. We systematically study the theoretical properties of the proposed procedure and prove its model consistency property. We further establish the root- convergence of the estimator of the regression coefficients and the asymptotic normality of the estimate of the baseline function. We conduct Monte Carlo simulations to examine the finite-sample performance of the proposed procedure and illustrate the proposed method with a real data example.

摘要

部分线性模型(PLM)是线性模型的一种有用的半参数扩展,在统计文献中已得到充分研究。本文提出了一种针对具有超高维预测变量的部分线性模型的变量选择方法。所提出的方法与现有的惩罚最小二乘法不同,因为它依赖于响应变量的部分残差与预测变量之间的偏相关。我们系统地研究了所提出方法的理论性质,并证明了其模型一致性。我们进一步建立了回归系数估计量的根收敛性以及基线函数估计量的渐近正态性。我们进行蒙特卡罗模拟以检验所提出方法的有限样本性能,并通过一个实际数据示例来说明该方法。

相似文献

1
Variable selection for partially linear models via partial correlation.
J Multivar Anal. 2018 Sep;167:18-434. doi: 10.1016/j.jmva.2018.06.005. Epub 2018 Jun 20.
3
Variable Selection in Semiparametric Regression Modeling.
Ann Stat. 2008;36(1):261-286. doi: 10.1214/009053607000000604.
4
Variable Selection via Partial Correlation.
Stat Sin. 2017 Jul;27(3):983-996. doi: 10.5705/ss.202015.0473.
5
Variable selection for partially linear models via Bayesian subset modeling with diffusing prior.
J Multivar Anal. 2021 May;183. doi: 10.1016/j.jmva.2021.104733. Epub 2021 Feb 13.
6
Feature screening in ultrahigh-dimensional additive Cox model.
J Stat Comput Simul. 2018;88(6):1117-1133. doi: 10.1080/00949655.2017.1422127. Epub 2018 Jan 8.
7
Variable Selection for Partially Linear Models with Measurement Errors.
J Am Stat Assoc. 2009;104(485):234-248. doi: 10.1198/jasa.2009.0127.
8
Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.
J Am Stat Assoc. 2007 Jun 1;102(478):632-641. doi: 10.1198/016214507000000095.
9
Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates.
J Am Stat Assoc. 2014 Jan 1;109(505):266-274. doi: 10.1080/01621459.2013.850086.
10
Asymptotic Behavior of Cox's Partial Likelihood and its Application to Variable Selection.
Stat Sin. 2018 Oct;28(4):2713-2731. doi: 10.5705/ss.202016.0401.

引用本文的文献

1
Marginalized LASSO in the low-dimensional difference-based partially linear model for variable selection.
J Appl Stat. 2024 Jul 9;52(2):400-428. doi: 10.1080/02664763.2024.2372676. eCollection 2025.
2
Variable selection for partially linear models via Bayesian subset modeling with diffusing prior.
J Multivar Anal. 2021 May;183. doi: 10.1016/j.jmva.2021.104733. Epub 2021 Feb 13.

本文引用的文献

1
Variable Selection via Partial Correlation.
Stat Sin. 2017 Jul;27(3):983-996. doi: 10.5705/ss.202015.0473.
2
Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates.
J Am Stat Assoc. 2014 Jan 1;109(505):266-274. doi: 10.1080/01621459.2013.850086.
3
Variable Selection for Partially Linear Models with Measurement Errors.
J Am Stat Assoc. 2009;104(485):234-248. doi: 10.1198/jasa.2009.0127.
4
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
5
Variable Selection in Semiparametric Regression Modeling.
Ann Stat. 2008;36(1):261-286. doi: 10.1214/009053607000000604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验