Liu Jingyuan, Lou Lejia, Li Runze
Department of Statistics in School of Economics, Wang Yanan Institute for Studies in Economics and Fujian Key Laboratory of Statistical Science, Xiamen University, Xiamen, Fujian, 361005, China.
Ernst & Young, 5 Times Square, New York, NY 10036 USA.
J Multivar Anal. 2018 Sep;167:18-434. doi: 10.1016/j.jmva.2018.06.005. Epub 2018 Jun 20.
The partially linear model (PLM) is a useful semiparametric extension of the linear model that has been well studied in the statistical literature. This paper proposes a variable selection procedure for the PLM with ultrahigh dimensional predictors. The proposed method is different from the existing penalized least squares procedure in that it relies on partial correlation between the partial residuals of the response and the predictors. We systematically study the theoretical properties of the proposed procedure and prove its model consistency property. We further establish the root- convergence of the estimator of the regression coefficients and the asymptotic normality of the estimate of the baseline function. We conduct Monte Carlo simulations to examine the finite-sample performance of the proposed procedure and illustrate the proposed method with a real data example.
部分线性模型(PLM)是线性模型的一种有用的半参数扩展,在统计文献中已得到充分研究。本文提出了一种针对具有超高维预测变量的部分线性模型的变量选择方法。所提出的方法与现有的惩罚最小二乘法不同,因为它依赖于响应变量的部分残差与预测变量之间的偏相关。我们系统地研究了所提出方法的理论性质,并证明了其模型一致性。我们进一步建立了回归系数估计量的根收敛性以及基线函数估计量的渐近正态性。我们进行蒙特卡罗模拟以检验所提出方法的有限样本性能,并通过一个实际数据示例来说明该方法。