Suppr超能文献

含测量误差的部分线性模型的变量选择

Variable Selection for Partially Linear Models with Measurement Errors.

作者信息

Liang Hua, Li Runze

出版信息

J Am Stat Assoc. 2009;104(485):234-248. doi: 10.1198/jasa.2009.0127.

Abstract

This article focuses on variable selection for partially linear models when the covariates are measured with additive errors. We propose two classes of variable selection procedures, penalized least squares and penalized quantile regression, using the nonconvex penalized principle. The first procedure corrects the bias in the loss function caused by the measurement error by applying the so-called correction-for-attenuation approach, whereas the second procedure corrects the bias by using orthogonal regression. The sampling properties for the two procedures are investigated. The rate of convergence and the asymptotic normality of the resulting estimates are established. We further demonstrate that, with proper choices of the penalty functions and the regularization parameter, the resulting estimates perform asymptotically as well as an oracle procedure (Fan and Li 2001). Choice of smoothing parameters is also discussed. Finite sample performance of the proposed variable selection procedures is assessed by Monte Carlo simulation studies. We further illustrate the proposed procedures by an application.

摘要

本文聚焦于协变量存在加性误差时部分线性模型的变量选择问题。我们提出了两类变量选择方法,即惩罚最小二乘法和惩罚分位数回归法,采用非凸惩罚原则。第一种方法通过应用所谓的衰减校正方法来校正由测量误差导致的损失函数偏差,而第二种方法通过使用正交回归来校正偏差。研究了这两种方法的抽样性质。建立了所得估计量的收敛速度和渐近正态性。我们进一步证明,通过适当选择惩罚函数和正则化参数,所得估计量的渐近性能与一种神谕方法(Fan和Li,2001)相当。还讨论了平滑参数的选择。通过蒙特卡罗模拟研究评估了所提出的变量选择方法的有限样本性能。我们通过一个应用实例进一步说明了所提出的方法。

相似文献

1
Variable Selection for Partially Linear Models with Measurement Errors.
J Am Stat Assoc. 2009;104(485):234-248. doi: 10.1198/jasa.2009.0127.
2
Variable selection for ultra-high dimensional quantile regression with missing data and measurement error.
Stat Methods Med Res. 2021 Jan;30(1):129-150. doi: 10.1177/0962280220941533. Epub 2020 Aug 3.
3
Automatic Model Selection for Partially Linear Models.
J Multivar Anal. 2009 Oct 1;100(9):2100-2111. doi: 10.1016/j.jmva.2009.06.009.
4
Variable Selection in Semiparametric Regression Modeling.
Ann Stat. 2008;36(1):261-286. doi: 10.1214/009053607000000604.
6
Variable Selection in Measurement Error Models.
Bernoulli (Andover). 2010;16(1):274-300. doi: 10.3150/09-bej205.
8
One-step Sparse Estimates in Nonconcave Penalized Likelihood Models.
Ann Stat. 2008 Aug 1;36(4):1509-1533. doi: 10.1214/009053607000000802.
9
Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors.
Lifetime Data Anal. 2023 Jan;29(1):115-141. doi: 10.1007/s10985-022-09568-2. Epub 2022 Jul 22.
10
ADAPTIVE ROBUST VARIABLE SELECTION.
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.

引用本文的文献

1
Adaptive CoCoLasso for High-Dimensional Measurement Error Models.
Entropy (Basel). 2025 Jan 21;27(2):97. doi: 10.3390/e27020097.
2
Marginalized LASSO in the low-dimensional difference-based partially linear model for variable selection.
J Appl Stat. 2024 Jul 9;52(2):400-428. doi: 10.1080/02664763.2024.2372676. eCollection 2025.
3
Model averaging for right censored data with measurement error.
Lifetime Data Anal. 2024 Apr;30(2):501-527. doi: 10.1007/s10985-024-09620-3. Epub 2024 Mar 13.
4
Integrated partially linear model for multi-center studies with heterogeneity and batch effect in covariates.
Statistics (Ber). 2023;57(5):987-1009. doi: 10.1080/02331888.2023.2258429. Epub 2023 Oct 13.
6
Variable selection for partially linear models via Bayesian subset modeling with diffusing prior.
J Multivar Anal. 2021 May;183. doi: 10.1016/j.jmva.2021.104733. Epub 2021 Feb 13.
8
MALMEM: model averaging in linear measurement error models.
J R Stat Soc Series B Stat Methodol. 2019 Sep;81(4):763-779. doi: 10.1111/rssb.12317. Epub 2019 Jun 2.
10
Applying the exposome concept in birth cohort research: a review of statistical approaches.
Eur J Epidemiol. 2020 Mar;35(3):193-204. doi: 10.1007/s10654-020-00625-4. Epub 2020 Mar 27.

本文引用的文献

1
Partially Linear Models with Missing Response Variables and Error-prone Covariates.
Biometrika. 2007 Mar 1;94(1):185-198. doi: 10.1093/biomet/asm010.
2
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
3
Variable Selection using MM Algorithms.
Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.
4
Tuning parameter selectors for the smoothly clipped absolute deviation method.
Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.
5
Estimation in semiparametric transition measurement error models for longitudinal data.
Biometrics. 2009 Sep;65(3):728-36. doi: 10.1111/j.1541-0420.2008.01173.x. Epub 2009 Jan 23.
6
Variable Selection in Semiparametric Regression Modeling.
Ann Stat. 2008;36(1):261-286. doi: 10.1214/009053607000000604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验