Li Runze, Ren Jian-Jian, Yang Guangren, Yu Ye
Pennsylvania State University.
University of Maryland.
Stat Sin. 2018 Oct;28(4):2713-2731. doi: 10.5705/ss.202016.0401.
For theoretical properties of variable selection procedures for Cox's model, we study the asymptotic behavior of partial likelihood for the Cox model. We find that the partial likelihood does not behave like an ordinary likelihood, whose sample average typically tends to its expected value, a finite number, in probability. Under some mild conditions, we prove that the sample average of partial likelihood tends to infinity at the rate of the logarithm of the sample size, in probability. We apply the asymptotic results on the partial likelihood to study tuning parameter selection for penalized partial likelihood. We find that the penalized partial likelihood with the generalized cross-validation (GCV) tuning parameter proposed in Fan and Li (2002) enjoys the model selection consistency property, despite the fact that GCV, AIC and , equivalent in the context of linear regression models, are not model selection consistent. Our empirical studies via Monte Carlo simulation and a data example confirm our theoretical findings.
对于Cox模型变量选择程序的理论性质,我们研究了Cox模型部分似然的渐近行为。我们发现部分似然的表现不同于普通似然,普通似然的样本均值通常依概率收敛到其期望值,一个有限数。在一些温和条件下,我们证明部分似然的样本均值依概率以样本量对数的速率趋于无穷。我们将部分似然的渐近结果应用于研究惩罚部分似然的调谐参数选择。我们发现,尽管在线性回归模型背景下等价的广义交叉验证(GCV)、AIC和 不是模型选择一致的,但Fan和Li(2002)提出的具有广义交叉验证(GCV)调谐参数的惩罚部分似然具有模型选择一致性性质。我们通过蒙特卡罗模拟和一个数据实例进行的实证研究证实了我们的理论发现。