Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , Basel , Switzerland.
Infectious Diseases , Novartis Institutes for BioMedical Research , Emeryville , California , United States.
ACS Chem Biol. 2019 Jun 21;14(6):1217-1226. doi: 10.1021/acschembio.9b00141. Epub 2019 Jun 11.
Beta-lactams comprise one of the earliest classes of antibiotic therapies. These molecules covalently inhibit enzymes from the family of penicillin-binding proteins (PBPs), which are essential in construction of the bacterial cell wall. As a result, beta-lactams cause striking changes to cellular morphology, the nature of which varies by the range of PBPs simultaneously engaged in the cell. The traditional method of exploring beta-lactam polyspecificity is a gel-based binding assay which is low-throughput and typically is run ex situ in cell extracts. Here, we describe a medium-throughput, image-based assay combined with machine learning methods to automatically profile the activity of beta-lactams in E. coli cells. By testing for morphological change across a panel of strains with perturbations to individual PBP enzymes, our approach automatically and quantifiably relates different beta-lactam antibiotics according to their preferences for individual PBPs in cells. We show the potential of our approach for guiding the design of novel inhibitors toward different PBP-binding profiles by predicting the mechanisms of two recently reported PBP inhibitors.
β-内酰胺类抗生素是最早的抗生素治疗药物之一。这些分子与青霉素结合蛋白(PBPs)家族的酶形成共价键,这些酶在构建细菌细胞壁中必不可少。因此,β-内酰胺类抗生素会导致细胞形态发生明显变化,其性质因同时参与细胞的 PBPs 范围而异。探索β-内酰胺类抗生素多特异性的传统方法是基于凝胶的结合测定法,这种方法通量低,通常在细胞提取物中进行离体运行。在这里,我们描述了一种中通量、基于图像的测定法,结合机器学习方法,可自动分析大肠杆菌细胞中β-内酰胺类抗生素的活性。通过对单个 PBP 酶受到干扰的一系列菌株进行形态变化测试,我们的方法根据细胞中不同 PBPs 对不同β-内酰胺类抗生素的偏好,自动和定量地对它们进行了关联。我们通过预测最近报道的两种 PBP 抑制剂的作用机制,展示了我们的方法在指导设计针对不同 PBP 结合谱的新型抑制剂方面的潜力。