Suppr超能文献

溶剂蒸汽退火相对于热退火对基于非富勒烯受体的体异质结太阳能电池光伏性能的有效性

Effectiveness of Solvent Vapor Annealing over Thermal Annealing on the Photovoltaic Performance of Non-Fullerene Acceptor Based BHJ Solar Cells.

作者信息

Datt Ram, Bagui A, Siddiqui Afzal, Sharma R, Gupta Vinay, Yoo S, Kumar S, Singh Surya Prakash

机构信息

CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

出版信息

Sci Rep. 2019 Jun 12;9(1):8529. doi: 10.1038/s41598-019-44232-0.

Abstract

We explore two small molecules containing arms of dicyano-n-hexylrhodanine and diathiafulvalene wings terminated with benzothiadiazole linker, denoted as BAF-4CN and BAF-2HDT, respectively, as small molecule non-fullerene acceptors (SMNFAs) in organic solar cells. The proposed materials are mixed with a low band gap polymer donor PTB7-Th having broad absorption in the range of 400-750 nm to form solution-processed bulk heterojunctions (BHJs). The photoluminescence (PL) measurements show that both donor and acceptor can quench each other's PL effectively, implying that not only electrons are transferred from PTB7-Th → SMNFAs but also holes are transferred from SMNFAs → PTB7-Th for efficient photocurrent generation. Furthermore, solvent vapor annealing (SVA) processing is shown to yield a more balanced hole and electron mobility and thus suppresses the trap-assisted recombination significantly. With this dual charge transfer enabled via fine-tuning of end-groups and SVA treatment, power conversion efficiency of approximately 10% is achieved, demonstrating the feasibility of the proposed approach.

摘要

我们研究了两种小分子,分别含有由二氰基正己基罗丹宁臂和以苯并噻二唑连接基终止的二硫富瓦烯翼,分别表示为BAF - 4CN和BAF - 2HDT,作为有机太阳能电池中的小分子非富勒烯受体(SMNFA)。将所提出的材料与在400 - 750 nm范围内具有宽吸收的低带隙聚合物供体PTB7 - Th混合,以形成溶液处理的本体异质结(BHJ)。光致发光(PL)测量表明,供体和受体都能有效地淬灭彼此的PL,这意味着不仅电子从PTB7 - Th→SMNFA转移,而且空穴也从SMNFA→PTB7 - Th转移,以实现高效的光电流产生。此外,溶剂蒸汽退火(SVA)处理显示出能产生更平衡的空穴和电子迁移率,从而显著抑制陷阱辅助复合。通过这种通过端基微调实现的双电荷转移和SVA处理,实现了约10%的功率转换效率,证明了所提出方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/127e/6561915/04b33fe4e1d7/41598_2019_44232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验