European Molecular Biology Laboratory, Heidelberg, Germany.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Nature. 2019 Jul;571(7763):112-116. doi: 10.1038/s41586-019-1309-x. Epub 2019 Jun 12.
Size control is fundamental in tissue development and homeostasis. Although the role of cell proliferation in these processes has been widely studied, the mechanisms that control embryo size-and how these mechanisms affect cell fate-remain unknown. Here we use the mouse blastocyst as a model to unravel a key role of fluid-filled lumen in the control of embryo size and specification of cell fate. We find that there is a twofold increase in lumenal pressure during blastocyst development, which translates into a concomitant increase in cell cortical tension and tissue stiffness of the trophectoderm that lines the lumen. Increased cortical tension leads to vinculin mechanosensing and maturation of functional tight junctions, which establishes a positive feedback loop to accommodate lumen growth. When the cortical tension reaches a critical threshold, cell-cell adhesion cannot be sustained during mitotic entry, which leads to trophectoderm rupture and blastocyst collapse. A simple theory of hydraulically gated oscillations recapitulates the observed dynamics of size oscillations, and predicts the scaling of embryo size with tissue volume. This theory further predicts that disrupted tight junctions or increased tissue stiffness lead to a smaller embryo size, which we verified by biophysical, embryological, pharmacological and genetic perturbations. Changes in lumenal pressure and size can influence the cell division pattern of the trophectoderm, and thereby affect cell allocation and fate. Our study reveals how lumenal pressure and tissue mechanics control embryo size at the tissue scale, which is coupled to cell position and fate at the cellular scale.
大小控制是组织发育和稳态的基础。尽管细胞增殖在这些过程中的作用已被广泛研究,但控制胚胎大小的机制以及这些机制如何影响细胞命运仍然未知。在这里,我们使用小鼠胚泡作为模型,揭示了充满液体的腔在控制胚胎大小和细胞命运特化中的关键作用。我们发现,在胚泡发育过程中,腔室内的压力增加了一倍,这转化为细胞皮质张力和腔衬的滋养外胚层组织硬度的相应增加。增加的皮质张力导致 vinculin 机械感知和功能紧密连接的成熟,从而建立一个正反馈回路来容纳腔室的生长。当皮质张力达到临界阈值时,细胞在有丝分裂进入时无法维持细胞间的粘附,导致滋养外胚层破裂和胚泡塌陷。一个简单的液压门控振荡理论再现了大小振荡的观察到的动力学,并预测了胚胎大小与组织体积的比例。该理论进一步预测,紧密连接的破坏或组织硬度的增加会导致胚胎大小减小,我们通过生物物理、胚胎学、药理学和遗传学扰动验证了这一点。腔室内压力和大小的变化可以影响滋养外胚层的细胞分裂模式,从而影响细胞分配和命运。我们的研究揭示了腔室内压力和组织力学如何在组织尺度上控制胚胎大小,这与细胞位置和细胞尺度上的命运有关。