Akaike Mami, Hatakeyama Jun, Nakashima Yuta, Shimamura Kenji
Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.
Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
Dev Growth Differ. 2025 Jun;67(5):230-244. doi: 10.1111/dgd.70010. Epub 2025 May 13.
In living organisms, including humans, the developmental processes that construct their morphology from a single fertilized egg are influenced not only by genetic regulation but also by various external factors. One such factor is mechanical stimulation. Although mechanical forces are suggested to contribute to brain formation during development, quantitative information on intraventricular pressure during neurogenesis remains limited. We developed a high time-resolution system efficiently using a piezoresistive sensor to measure brain intraventricular pressure in mouse embryos from E12.5 to E16.5 (embryonic stages in days). Ex utero measurements revealed intraventricular pressure increasing from 53.76 ± 4.16 Pa at E12.5 to 158.10 ± 19.94 Pa by E16.5. In utero analyses uncovered striking periodicity in sync with uterine contractions, reaching up to 1430 ± 195.2 Pa at E12.5, indicating dynamic mechanical stimuli beyond ex utero observations. Additionally, perforation experiments at E9.0-E15.5 showed rapid neuroepithelial thickening and apical surface contraction upon pressure release, indicative of a tensile effect by the positive intraventricular pressure. This effect diminished after E15.5, implying that tension wanes or the neuroepithelium becomes more robust. These results highlight the dynamic nature of embryonic intraventricular pressure, governed by internal fluid production and uterine forces, and emphasize the importance of mechanical cues in neuroepithelial architecture. Our findings provide a steppingstone to clarify how mechanical forces integrate with genetic and molecular processes to shape normal brain development and may render new perspectives on brain evolution.
在包括人类在内的生物体中,从单个受精卵构建其形态的发育过程不仅受到基因调控的影响,还受到各种外部因素的影响。其中一个因素就是机械刺激。尽管有研究表明机械力在发育过程中有助于大脑形成,但关于神经发生过程中脑室内压力的定量信息仍然有限。我们开发了一种高效的高时间分辨率系统,利用压阻传感器测量E12.5至E16.5(以天为单位的胚胎阶段)小鼠胚胎的脑室内压力。体外测量显示,脑室内压力从E12.5时的53.76±4.16帕增加到E16.5时的158.10±19.94帕。体内分析发现,与子宫收缩同步存在明显的周期性,E12.5时高达1430±195.2帕,这表明存在体外观察之外的动态机械刺激。此外,在E9.0 - E15.5进行的穿孔实验表明,压力释放后神经上皮迅速增厚且顶端表面收缩,这表明正的脑室内压力具有拉伸作用。这种作用在E15.5之后减弱,这意味着张力减弱或神经上皮变得更坚韧。这些结果突出了胚胎脑室内压力的动态性质,它受内部液体产生和子宫力的支配,并强调了机械信号在神经上皮结构中的重要性。我们的发现为阐明机械力如何与基因和分子过程整合以塑造正常大脑发育提供了一个垫脚石,并可能为大脑进化带来新的视角。